INFORME DE AVANCES
PUMAGUA, UNAM
2013
Índice de contenido

Índice de contenido .. 2
Índice de Figuras .. 5
Índice de Tablas .. 7
I. Introducción .. 9
II. Objetivo y metas .. 9
III. Ejes de acción .. 9
IV. Indicadores de avance ... 10
V. Balance Hidráulico 2013 ... 11
 A. Sistema automático de lectura .. 11
 1. Macro medición .. 13
 2. Micro medición .. 14
 a) Trabajos en Ciudad Universitaria ... 14
 b) Trabajos de enlace de micro medidores al sistema de lectura .. 15
 c) Trabajos en FES Aragón .. 16
 B. Sistema Universitario de Monitoreo de Agua (SUMA) ... 19
 C. Evaluación de las pérdidas en la red de distribución .. 21
 1. Elaboración de planos de operación de la red .. 21
 2. Proyecto ejecutivo de conexión hidráulica de los sectores hidráulicos 1 y 2 ... 22
 3. Puesta en marcha de los macro medidores correspondientes a los sectores hidráulicos 1 y 2 23
 4. Evaluación de las pérdidas de agua en el sistema durante el tiempo ... 24
 D. Análisis de mediciones ... 26
 E. Usos del agua en Ciudad Universitaria .. 30
 F. Control de presiones ... 33
 Etapa 1.- Modelación del sistema de agua potable ... 34
 Etapa 2.- Conformación física de los sectores hidráulicos .. 34
 Etapa 3.- Instalación y puesta de equipos de medición .. 35
 Etapa 4.- Puesta en marcha de los equipos de control de presiones .. 35
 G. Balance Hidráulico 2013 .. 40
 H. Programa de muebles de baño .. 44
VI. Calidad del Agua 2013 ... 45
 A. Objetivo .. 45
B. Agua para uso y consumo humano... 45
 1. Fuente de abastecimiento de agua para uso y consumo humano en el campus Ciudad Universitaria... 45
 2. Tanques de almacenamiento de agua para uso y consumo humano en el campus Ciudad Universitaria... 48
 3. Monitoreo en tiempo real de la calidad del agua para uso y consumo humano en el campus Ciudad Universitaria.. 51
 4. Monitoreo puntual permanente en la red de distribución de agua para uso y consumo humano en el campus Ciudad Universitaria........ 54
 a) Análisis de agua para uso y consumo humano en la red de distribución de acuerdo a la NOM-127-SSA1-1994, modificada en el 2000, realizado por Laboratorio Externo Certificado... 57
 5. Monitoreo de cloro residual libre en cisternas de almacenamiento de agua para uso y consumo humano en edificios del campus Ciudad Universitaria.............................. 59
 6. Bebederos de agua para consumo humano en el campus Ciudad Universitaria...... 62
C. Agua pluvial ... 64
 1. Pozos de absorción de agua pluvial en el campus Ciudad Universitaria........ 64
D. Agua residual tratada .. 67
 1. Monitoreo integral de la calidad del agua residual tratada para riego de áreas verdes en el campus Ciudad Universitaria.. 67
E. Formación de recursos humanos... 70
F. Congresos, Publicaciones y Conferencias.. 71
VII. Comunicación / Participación, 2013.. 71
A. Indicadores de avance... 71
B. Actividades realizadas.. 72
C. Estudiantes y académicos .. 72
 1. “Reunamos acciones por el agua”, para estudiantes de licenciatura de la UNAM 72
 a) Exposición de trabajos ganadores de Reunamos Acciones por el Agua, en la Facultad de Medicina ... 72
 b) Exposición de los trabajos de reunamos acciones por el agua en Huichapan, Hidalgo ... 72
 c) Presentación de propuestas ganadoras a autoridades universitarias 72
 2. Auditoría de muebles de baño en Facultad de Contaduría y Administración (FCA) ... 74
 3. Pláticas a estudiantes... 74
 4. Personal de mantenimiento: intendentes y jardineros 74
D. Autoridades universitarias ... 75
 1. Campus externos.. 75
Informe de Avances PUMAGUA 2013

a) Mtro. Juan Villagrán ... 75
b) Lic. Alejandra Caballero-Líder de proyecto 75

2. Ciudad Universitaria .. 75
 a) Dependencias y entidades del Circuito Mario de la Cueva 75
 b) Facultad de Derecho. ... 76

e) Comunidad universitaria y externa .. 76

1. Festival H2O: efecto esperado .. 76
 a) Ceremonia de premiación de los concursos del festival H2O: efecto esperado 2012 ... 76
 b) Organización de festival 2013 .. 77
 c) Publicación de obras premiadas de los concursos de los festivales 2011-2013 ... 77

2. Actualización de la página web .. 78

3. Actualización de redes sociales ... 78

4. Boletín PUMAGUA .. 78

5. Observatorio del Agua UNAM .. 78

6. Elaboración de artículos .. 78

7. Presencia en medios de comunicación .. 79
 a) Televisión .. 79
 b) Radio .. 79
 c) Medios impresos ... 79
 d) Medios digitales: ... 80

F. Otras actividades .. 80

VIII. Bibliografía .. 81
Índice de Figuras

Figura 1. Visión prospectiva de PUMAGUA, a través de sus ejes de acción. .. 10
Figura 2. Medidor electromagnético y válvula reguladora de presión correspondientes al sector hidráulico 1 instalado durante 2012. ... 14
Figura 3. Avances en los trabajos de montaje del sistema de lectura automática presentados durante 2011. A la izquierda se muestran los avances en Enero de 2011 y a la derecha los avances Agosto de 2013 .. 15
Figura 4. Trabajos de perforación de tapas metálicas para facilitar el enlace de los medidores a los equipos receptores de señal o Gateway. ... 16
Figura 5. Trabajos de colocación de repetidores en FES Aragón. .. 17
Figura 6. Vista en Google Earth de la infraestructura hidráulica posicionada en FES Aragón 18
Figura 7. Página de Inicio de la Plataforma SUMA .. 19
Figura 8. Información que se muestra en la pestaña medidores ... 20
Figura 9. Información que se muestra en la pestaña de consumo ... 20
Figura 10. Plano del Sector Hidráulico 1. .. 21
Figura 11. Conexión hidráulica de los sectores hidráulicos 1 y 2 .. 22
Figura 12. Consumo promedio del sector hidráulico 1 ... 23
Figura 14. Distribución de la Población en Ciudad Universitaria 2012 .. 27
Figura 17. Usos del Agua en Ciudad Universitaria previstos para el 100% de cobertura. Fuente: PUMAGUA 2012 .. 32
Figura 19. Consumo en el sector hidráulico 3 .. 36
Figura 20. Consumo promedio en el sector hidráulico 3. .. 37
Figura 21. Consumo en el sector hidráulico 1. .. 38
Figura 22. Consumo en el sector hidráulico 1. .. 39
Figura 25. Monitoreo integral permanente del agua para uso y consumo humano en el campus Ciudad Universitaria, 2013 ... 45
Figura 26. Ubicación de los pozos de extracción de agua para uso y consumo humano en el campus Ciudad Universitaria. ... 46
Figura 29. Ubicación de los tanques de almacenamiento de agua para uso y consumo humano en el campus Ciudad Universitaria, 2013.

Figura 33. Ubicación de sistema de sensores de medición en tiempo real de la calidad del agua para uso y consumo humano en el campus Ciudad Universitaria, 2013.

Figura 35. Ubicación de puntos de monitoreo permanente de calidad del agua para uso y consumo humano en la red de distribución del campus Ciudad Universitaria, 2013.

Figura 38. Ubicación de cisternas de almacenamiento de agua para uso y consumo humano en edificios del campus Ciudad Universitaria, 2013.

Figura 40. Ubicación de pozos de absorción de agua pluvial en el campus Ciudad Universitaria, 2013.

Figura 41. Ubicación de planta de tratamiento de aguas residuales Cerro del Agua y Cisternas de almacenamiento de agua residual tratada monitoreadas en el campus Ciudad Universitaria, 2013.

Figura 42. Cartel elaborado por la Dirección General de Servicios a la Comunidad para Tienda UNAM.
Índice de Tablas

Tabla 1. Avances de posicionamiento en relación a los medidores proyectados. Fuente: PUMAGUA
Tabla 2. Evolución de las pérdidas de agua en el sistema en 2009, 2012 y 2013
Tabla 3. Población Escolar Campus Ciudad Universitaria. Fuente: Dirección General de Administración General
Tabla 4. Personal Académico Campus Ciudad Universitaria. Fuente: Dirección General de Personal
Tabla 5. Equipos de Micromedición en Ciudad Universitaria.
Tabla 8. Datos del monitoreo permanente de calidad del agua para uso y consumo humano a pie de pozo, 2013
Tabla 9. Datos del monitoreo permanente de calidad del agua para uso y consumo humano en tanques de almacenamiento, 2013
Tabla 10. Datos del monitoreo en tiempo real de la calidad del agua para uso y consumo humano en la red de distribución del campus Ciudad Universitaria, 2013
Tabla 11. Datos del monitoreo permanente de calidad del agua para uso y consumo humano en la red de distribución del campus Ciudad Universitaria, 2013
Tabla 13. Análisis de resultados del monitoreo de cloro residual libre de agua para uso y consumo humano en cisternas de almacenamiento en edificios del campus Ciudad Universitaria, 2013
Tabla 14. Datos del monitoreo de la calidad del agua de consumo en bebederos instalados en el campus Ciudad Universitaria, 2013
Tabla 15. Límites permisibles de contaminantes en agua para recarga artificial de acuíferos, y sus métodos de análisis
Tabla 16. Límites máximos permisibles de contaminantes para las aguas residuales tratadas que se reúsan en servicios al público por contacto directo
Tabla 17. Servicio Social en el grupo de calidad del agua
Tabla 18. Tesis en desarrollo en el grupo de calidad del agua
Tabla 19. Tesis concluidas en el grupo de calidad del agua
I. Introducción

Como resultado de la participación de la UNAM en el IV Foro Mundial del Agua y del Primer Encuentro Universitario del Agua en 2006, el Consejo Universitario consideró imperativo adoptar medidas concretas para lograr el uso y manejo eficiente del agua en todos sus campus, no sólo ante los problemas asociados al crecimiento constante de sus instalaciones, sino también como ejemplo de hacer uso del conocimiento universitario en la solución de los problemas prioritarios del país. Por mandato del propio Consejo Universitario, en 2008, se puso en marcha el Programa de Manejo, Uso y Reuso del Agua en la UNAM, PUMAGUA, con el apoyo de la Rectoría.

Se ha logrado implementar el Programa con éxito en CU y en 5 campus de la UNAM. Asimismo, se ha establecido un sistema de monitoreo y seguimiento del mismo, fundamental para que el uso responsable del agua en la UNAM se mantenga a mediano y largo plazos.

II. Objetivo y metas

Objetivo:

Implantar un programa integral de manejo, uso y reuso del agua en la UNAM, con la participación de toda la comunidad universitaria.

Metas:

1.- Disminuir el suministro de agua en 50% en cada uno de los campus

2.- Cumplir con las normas mexicanas para que el agua de uso y consumo humano sea bebible y que el agua de reuso para el riego no represente riesgos a la salud de la población universitaria

3.- Lograr la participación de todas las dependencias de la UNAM y de los universitarios en el uso responsable del agua.

III. Ejes de acción

PUMAGUA está conformado por tres ejes de acción que trabajan de manera sincrónica (Figura 1): Balance hidráulico (Meta 1), Calidad del agua (Meta 2), Comunicación/Participación (Meta 3):
IV. Indicadores de avance

Algunas acciones de los tres ejes de acción que dan un panorama general de los logros del Programa en 2013 son las siguientes:

- Desarrollo de plataforma digital para monitoreo y despliegue de consumo en tiempo real
- Recuperación de 8 l/s de fugas en la red principal y en edificios
- Sustitución de 1000 muebles de baño por muebles ahorradores
- Inicio de implementación de PUMAGUA en campus Morelos y en campus de la Universidad Autónoma de Baja California Sur
- Monitoreo permanente de agua para uso y consumo humano
- Monitoreo de agua de reúso en riego
- Acciones de desarrollo de capacidades para estudiantes y personal de mantenimiento
- Divulgación de PUMAGUA a través de congresos internacionales, artículos especializados, de divulgación y capítulos de libro
- Presencia de PUMAGUA en televisión, radio, prensa escrita y medios digitales

A continuación se presentan los avances detallados en cada uno de los ejes de acción.
V. Balance Hidráulico 2013

A. Sistema automático de lectura

Durante el 2013 los trabajos relacionados con el montaje del sistema de lectura hicieron posible incrementar 3 puntos porcentuales la cobertura de micro medición (Se incrementó de 65 % a 68 %) en el campus. Actualmente se encuentran instalados 178 micro medidores en Ciudad Universitaria, de los cuales se encuentran en operación 175 y son recibidos remotamente un total de 117 equipos, ver Tabla 1. Este avance sitúa a la cobertura de micro medición en 68 % con los que es posible el monitoreo promedio mensual de 45 mil metros cúbicos de 200 mil que en promedio se extraen de los pozos.

Se estima que con la instalación de los medidores correspondientes a la totalidad de las entidades académicas1 así como aquellos institutos y centros que no han instalado sus equipos se llegue a la medición mensual de 60 mil metros cúbicos (aprox. 25 l/s) lo cual representa el 30 % de lo extraído de los pozos. Actualmente las mediciones correspondientes a las entidades que disponen de medidor instalado y funcionando se publican de manera mensual en la página de PUMAGUA en el siguiente enlace: http://www.pumagua.unam.mx/balance_consumo.html.

Uno de los avances más significativos de PUMAGUA en este año es el análisis que se realiza a la mediciones disponibles ya que permite determinar cuánta agua demanda Ciudad Universitaria, quien y como la utiliza y sus posibles escenarios respecto al tiempo. Más adelante se muestra un resumen de este análisis y en el anexo correspondiente se detalla más en el tema. Avances de posicionamiento en relación a los medidores proyectados. Fuente: PUMAGUA.

Tabla 1. Avances de posicionamiento en relación a los medidores proyectados. Fuente: PUMAGUA

<table>
<thead>
<tr>
<th>Equipo</th>
<th>Proyectados (CU)</th>
<th>Instalados</th>
<th>En operación (Con carátula)</th>
<th>Porcentaje de instalación</th>
<th>Porcentaje de avance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macro medidores</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Pozos tanques y sectores</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hidráulicos)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>6</td>
<td>100 %</td>
<td>67 %</td>
<td></td>
</tr>
<tr>
<td>Gateway (Receptores)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>7</td>
<td>100 %</td>
<td>100 %</td>
<td></td>
</tr>
<tr>
<td>Válvulas Regulatoras de</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Presión</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0</td>
<td>100 %</td>
<td>0 %</td>
<td></td>
</tr>
<tr>
<td>Micro medidores</td>
<td>261</td>
<td>178</td>
<td>175</td>
<td>68%</td>
<td>66%</td>
</tr>
<tr>
<td>Sensores de nivel</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>30 %</td>
<td>30 %</td>
</tr>
</tbody>
</table>

Por otra parte, actualmente se encuentran integrados a este mismo sistema los macro medidores correspondientes a las fuentes de abastecimiento, dos de los cinco sectores hidráulicos y un rebombeo. Los medidores faltantes, que son los instalados en los sectores

1Las siete entidades que se mencionan son: Las Facultades de Ciencias Políticas y Sociales (8 medidores), Ciencias (11 medidores), Ingeniería (5 medidores), Medicina (2 medidores), Química (15 medidores), Contaduría y Administración (3 medidores) y la Dirección General de Servicios Médicos con un medidor.
hidráulicos 3, 4 y 5 se espera ponerlos en marcha durante el segundo semestre del año. El medidor correspondiente al sector hidráulico 3 resultó dañado probablemente por una descarga eléctrica.

Con las mediciones de los sectores hidráulicos ha sido posible evaluar la evolución de los programas de reducción de pérdidas en el campus. Actualmente en la sistema se pierden un total de 33 l/s, 5 l/s más en relación a las pérdidas del año anterior. El sector hidráulico 1 mostró un incremento de pérdidas en un 100 % al pasar de 10 l/s en 2009 a 20 l/s en 2013, ver Tabla 2.

Sin embargo, los otros cuatro sectores muestran un descenso en su nivel de pérdidas en relación al año 2009. Un dato importante que es posible tener con la medición del consumo es la cuantificación de las pérdidas de agua en los edificios, la cual actualmente se sitúa en el 23 % (5.9 l/s) del consumo (25 l/s) y el 7 % de lo suministrado al campus (85 l/s en época de riego).

Los análisis de la información han permitido incluso discriminar si las fugas en los sectores se ubican predominantemente en la red o bien, al interior de las entidades universitarias. Los primeros resultados muestran que hasta el 20 % de las fugas del sector 2 se ubican en las entidades y el restante en la red de distribución.

<table>
<thead>
<tr>
<th>Sector Hidráulico</th>
<th>Cobertura de medición (%)</th>
<th>Pérdidas (l/s) 2009</th>
<th>Pérdidas (l/s) 2012</th>
<th>Pérdidas (l/s) 2012</th>
<th>Pérdidas en edificios (l/s) 2012</th>
<th>Pérdidas en edificios (l/s) 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>77</td>
<td>20.0</td>
<td>10.0</td>
<td>20.0</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>2</td>
<td>65</td>
<td>5.0</td>
<td>10.0</td>
<td>5.0</td>
<td>2.0</td>
<td>1.2</td>
</tr>
<tr>
<td>3</td>
<td>69</td>
<td>19.0</td>
<td>8.0</td>
<td>8.0</td>
<td>3.2</td>
<td>2.7</td>
</tr>
<tr>
<td>4</td>
<td>69</td>
<td>1.6</td>
<td>0.0</td>
<td>0.1</td>
<td>0.0</td>
<td>0.1</td>
</tr>
<tr>
<td>5</td>
<td>56</td>
<td>13.0</td>
<td>10.0</td>
<td>10.0</td>
<td>0.2</td>
<td>0.7</td>
</tr>
<tr>
<td>TOTAL</td>
<td>58.6</td>
<td>38.0</td>
<td>43</td>
<td>5.9</td>
<td>5.2</td>
<td></td>
</tr>
</tbody>
</table>

En lo que respecta a la instalación de los concentradores de lecturas (Gateway) en este año ha sido posible instalar la totalidad de estos equipos en el campus de ciudad universitaria, FES.
Aragón y UNAM, Campus Juriquilla. Actualmente se trabaja en el enlace de los medidores mediante la instalación de 25 repetidores de señal. Como resultado de estos trabajos es posible monitorear remotamente 135 micro medidores y 5 macro medidores (Correspondientes a Ciudad Universitaria, UNAM Campus Juriquilla y FES Aragón).

Los trabajos de micro medición han permitido la entrega de 231 micro medidores de los 261 (100%) propuestos para instalarse tan sólo en Ciudad Universitaria, de éstos se han instalado hasta Noviembre de 2012 un total de 175 (68%) medidores.

Actualmente, el 100% de los medidores instalados en FES Aragón se encuentran monitoreados vía remota por medio de dos concentradores de lecturas, esto ha hecho posible la ubicación del 50 % de las fugas totales en tan sólo cuatro edificios de este campus. Esta unidad multidisciplinaria ha presentado varias iniciativas para el ahorro del agua a través de la captación de agua de lluvia, la instalación de sus equipos de medición, la actualización de planos de agua potable, la creación de viveros, la puesta en marcha de estudios sobre humedales, entre otros. PUMAGUA ha brindado la asesoría necesaria para la conclusión de los trabajos de uso eficiente en este campus hasta donde le ha sido posible.

Uno de los atrasos más importantes en el desarrollo de este sistema de lectura y en consecuencia de la presente coordinación- es el correspondiente al desarrollo de la Interfaz de medición que tiene como propósito mostrar vía internet la información de las mediciones correspondientes a cada entidad universitaria. Se espera que los trabajos en el desarrollo de esta herramienta de análisis de resultados a finales de este 2013.

1. Macro medición

En lo que respecta a los trabajos de Macro medición, se acordó junto con la DGOyC la instalación de nueve medidores electromagnéticos: uno en la descarga de cada pozo (en total 3 medidores los cuales se encuentran actualmente instalados y en operación), uno en el re bombeo entre tanque bajo y tanque alto, uno a la salida del tanque bajo y uno en la entrada de cada sector hidráulico (en total 5 medidores para los sectores). La alimentación eléctrica de los medidores asignados a los Sectores 4 y 5 inicialmente se sugirió hacerlo a través de celdas fotos eléctricas luego de evaluar que esta era la opción más factible en comparación a tender una línea de suministro de corriente eléctrica para los equipos; sin embargo, en las últimas reuniones con la DGOyC se ha sugerido alimentar los equipos correspondientes al sector hidráulico 4 mediante una línea derivada del proyecto de media tensión actualmente en construcción. Por otra parte, se ha solicitado y se obtuvo por parte de la dirección del Colegio de Ciencias y Humanidades Plantel Sur una conexión a su sistema eléctrico de tal manera que sea posible alimentar los equipos correspondientes al sector hidráulico 5 mediante corriente alterna.

Actualmente se tienen instalados la totalidad de los medidores electromagnéticos de los Sectores Hidráulicos; de los cuales falta poner en marcha los medidores de los sectores hidráulicos 4 y 5.

También se ha trabajado junto con la DGOyC en la elaboración del proyecto ejecutivo para la conexión hidráulica de los Sectores Hidráulicos 1 y 2 que permitirá disminuir presiones en el
Sector Hidráulico I y en consecuencia lograr una disminución en el nivel de fugas en la red. En el anexo correspondiente se podrá encontrar los detalles de este proyecto a ejecutarse durante el mes de Diciembre de 2012.

Figura 2. Medidor electromagnético y válvula reguladora de presión correspondientes al sector hidráulico 1 instalado durante 2012.

2. Micro medición

a) Trabajos en Ciudad Universitaria

Los trabajos de levantamiento de tomas de agua potable dentro de Ciudad Universitaria (en los que se ha colaborado con la Dirección General de Obras y Conservación, así como personal de las propias entidades), han hecho posible sugerir la instalación de 261 medidores de agua en 120 entidades, de estos se han entregado 233 en 90 de ellas e instalado 178 medidores en 67 entidades, mientras que están por entregarse otros 28 medidores. De los 178 medidores instalados, actualmente sólo 165 están registrando lecturas de suministro de agua, debido, entre otras causas, al proceso de instalación de los equipos: PUMAGUA hace entrega de los medidores a las entidades derivado de los trabajos de identificación de tomas, la DGOyC los instala (sólo unidad primaria del medidor), posteriormente cada dependencia construye el registro que albergará al equipo (De acuerdo a las especificaciones establecidas en el Manual) y finalmente PUMAGUA coloca la carátula del medidor (Unidad secundaria) para iniciar la medición de suministro de agua. Este proceso de instalación, dicho sea de paso, es lento y es uno de las causas de los retrasos en la instalación de los equipos. Por otro lado, en el desarrollo de los trabajos algunos medidores han sido dañados por diversas causas: intento de robo, manipulación por personal no autorizado, etc. Actualmente está en proceso la entrega de 31 equipos mismos que se entregarán en los próximos días, ver Figura 3. Actualmente 117 de los medidores son leídos remotamente por medio de los concentradores de información.
Figura 3. Avances en los trabajos de montaje del sistema de lectura automática presentados durante 2011. A la izquierda se muestran los avances en Enero de 2011 y a la derecha los avances Agosto de 2013

\[\text{Diciembre 2011}\]
116 entidades universitarias involucradas
Micro medición:
228 Entregados en 93 entidades
155 Instalados en 63 entidades
Macro medición:
9 Macro medidores instalados
1 Sensor de nivel instalado

\[\text{Diciembre 2012}\]
116 entidades universitarias involucradas
Micro medición:
231 Entregados en 95 entidades
171 Instalados en 66 entidades
Macro medición:
9 Macro medidores instalados
1 Sensor de nivel instalado
2 VRP instalados

b) Trabajos de enlace de micro medidores al sistema de lectura

Los trabajos de enlace realizados a partir del mes de Agosto ha permitido el enlace de 52 micro medidores al sistema de lectura remota, casi el doble de lo monitoreado al finalizar el año pasado.

El avance en los trabajos no ha sido el esperado, se esperaba contar con al menos 120 de 178 micro medidores enlazados para finales de este año; sin embargo, las características propias de cada medidor en la mayor parte de las veces impide un adecuado avance, es muy común que para que la señal de los medidores pueda ser captada por las Gateway así como por los equipos repetidores resulta necesario perforar la tapa de los registros y colocar el transmisor de los medidores a este nivel, esto para que la señal salga libremente y pueda ser captada de mejor manera y así facilitar su enlace.

Sin embargo, la meta es terminar el enlace de la totalidad de los equipos durante el primer bimestre del año entrante.
c) **Trabajos en FES Aragón**

Como parte de los trabajos que ha venido haciendo el Programa PUMGUA en las entidades externas de la UNAM, es este caso en FES Aragón. El día 27 y 28 de junio se realizó una visita de trabajo en dicha entidad, con el objetivo de realizar las mediciones vía remota por medio de la antena Gateway instalada en el Campus y recibir desde Ciudad Universitaria dichas mediciones.
Se instalaron los repetidores necesarios hasta al momento para la recepción óptima de señal de los medidores, la etapa siguiente es la prueba de recepción desde Ciudad Universitaria en la Torre de Ingeniería. Una vez realizada la prueba se realizará un diagnóstico de las posibles fallas de recepción que pudieran presentarse. Por otro lado, existen algunos medidores que presentan problemas de salida de señal muy baja, por lo que es recomendable la salida de salida de radio al exterior del registro. Como resultado de los trabajos de colocación de repetidores, actualmente son recibidos vía remota la señal de 6 medidores de agua con base a los cuales ha sido posible detectar la mitad de las pérdidas físicas de agua en 4 de los 19 medidores instalados.

A la par de la descarga de información y durante el mismo recorrido se llevó a cabo el posicionamiento de los distintos elementos pertenecientes a la red del campus, entre estos se encuentran los medidores, así como las cisternas, unidades repetidoras de señal y el Gateway que se encuentra instalado en el auditorio de la FES.

Dicho posicionamiento se realiza con la finalidad de tener en un plano de la FES la ubicación exacta de cada uno de ellos, así como un mejor control de los mismos, facilitando además su ubicación, y las características de cada uno de los puntos, debido a que también se realizaron levantamientos e inspección de cada una de las acometidas y elementos que componen cada uno de los puntos localizados, ver Figura 6.
Figura 6. Vista en Google Earth de la infraestructura hidráulica posicionada en FES Aragón
B. Sistema Universitario de Monitoreo de Agua (SUMA)

Sistema Universitario de Monitoreo de Agua (SUMA). El SUMA es una herramienta tecnológica que permite a la comunidad universitaria y al público en general conocer en tiempo real el consumo y detectar fugas de agua de las distintas entidades universitarias. Está integrado por equipos de medición con tecnología de punta con el propósito de conocer y mejorar el consumo de agua. A la fecha, este sistema integra el total de los macro medidores de Ciudad Universitaria, Campus Juriquilla, 9 concentradores de información (receptores o Gateway), 2 válvulas reguladoras de presión, y 207 de los micro medidores instalados en edificios, 30 equipos repetidores y 1 de los 3 sensores de nivel en tanques de regulación.

Después de concentrar y analizar la información que se obtiene del constante monitoreo de la extracción y suministro de agua en CU, se genera la base de datos para poder realizar una plataforma en la WEB, en la cual se muestran los principales elementos hidráulicos que componen el sistema de abastecimiento de agua potable del campus.

Se realizaron múltiples reuniones de trabajo con la empresa encargada de elaborar esta plataforma, esto con la finalidad de lograr el objetivo de poner al alcance de cualquier usuario los consumos de agua que tienen las distintas dependencias de CU, e incluso de otros campus en donde PUMAGUA está presente.

Ya con toda esta información procesada, se llega a un producto final que se presento y que se encuentra en proceso de prueba, es decir, de revisión, validación y aprobación de la información y resultados que presenta la plataforma (SUMA).

![Figura 7. Página de Inicio de la Plataforma SUMA](image-url)
Como se puede ver en la figura 6, el SUMA nos muestra diferentes pestañas, en las que se puede consultar prácticamente cualquier información del sistema hidráulico de Ciudad Universitaria, desde los medidores que hay en alguna dependencia en especial, sus mediciones, su localización y aspectos técnicos hasta la información del agua extraída de un pozo en cualquier día, mes o año, entre otras cosas.

Figura 8. Información que se muestra en la pestaña medidores

Figura 9. Información que se muestra en la pestaña de consumo
C. Evaluación de las pérdidas en la red de distribución

Los trabajos de reducción de pérdidas este año estuvieron enfocados a la medición de éstas en el sistema, para ello se recurrió a darle continuidad a acciones establecidas desde el año pasado, como lo fueron:

1. Elaboración y actualización de planos de la red de distribución
2. Elaboración del proyecto ejecutivo para la conexión hidráulica de los sectores hidráulicos 1 y 2
3. Puesta en marcha de los macro medidores correspondientes a los sectores hidráulicos
4. Evaluación de pérdidas en el sistema de distribución.

En las siguientes páginas se describen las actividades mencionadas líneas arriba.

1. Elaboración de planos de operación de la red

Actualmente la red de distribución de agua potable opera sectorizada; sin embargo, en algunas ocasiones las válvulas de seccionamiento que hacen posible la hermeticidad hidráulica se encuentran abiertas o cerradas, según el caso. Por ese motivo el PUMAGUA y la DGOC propusieron la elaboración de planos que contengan los sectores por separado e indicando las válvulas que deben permanecer permanentemente abiertas y aquellas que deben estar permanentemente cerradas, ver Figura 9.

El propósito de estos planos es que los operadores del sistema dispongan de planos actualizados que muestren la forma de operar el sistema de forma sectorizada y, cuando surja alguna emergencia, conozcan cuáles válvulas deben cerrarse y cuáles abrirse de tal manera que se garantice siempre la hermeticidad hidráulica. Actualmente se está en proceso de actualización de dicho plano cual se espera tener concluido en Marzo del siguiente año.

![Figura 10. Plano del Sector Hidráulico 1.](image-url)
2. Proyecto ejecutivo de conexión hidráulica de los sectores hidráulicos 1 y 2.

Un sector hidráulico es una porción de la red de distribución bien delimitada geográficamente que cuenta con una fuente de abastecimiento definida y con capacidad suficiente para cubrir la demanda de los usuarios y sus variaciones en el tiempo (CONAGUA, 2010).

Para el caso de Ciudad Universitaria, se generaron cinco Sectores Hidráulicos, dos de los cuales serán controlados por Válvulas Reguladoras de Presión (VRP) con el propósito de reducir el gasto perdido en estos sectores y lograr una mayor reducción de presiones, sobre todo en el sector hidráulico 1, resulta necesaria la conexión hidráulica de este sector con el sector hidráulico 2. La propuesta plantea que el abasto de agua en la zona norponiente (subsector) del campus (ubicada dentro del sector 1 y en consecuencia abastecida por este sector) sea abastecido a partir del sector hidráulico 2 mediante una línea de 100 mm, ver Figura 8. Para mayores detalles sobre estos trabajos se sugiere al lector consultar el anexo correspondiente.
3. **Puesta en marcha de los macro medidores correspondientes a los sectores hidráulicos 1 y 2.**

Durante este año se concluyó la instalación de los medidores electromagnéticos correspondientes a los sectores hidráulicos; sin embargo se han puesto en operación los correspondientes a los sectores 1, 2 y 3. Las mediciones en estos sectores han permitido establecer el nivel de pérdidas físicas en cada uno de ellos. De esta manera, las pérdidas en estos ascienden a 28 l/s, es decir, el 75 % de las pérdidas del total que existen aún en el sistema. Las mediciones incluso han hecho posible determinar los patrones de demanda en estos sectores.

![Diagrama de consumo promedio del sector hidráulico 1](image)

Figura 12. Consumo promedio del sector hidráulico 1

Es importante mencionar que, en el caso del sector hidráulico 1 el consumo presente durante el día domingo es de 1000 m3, los cuales representan el volumen perdido en ese sector de forma constante, es decir, que la pérdida en este sector asciende a poco más del 50 % del suministro. Este análisis se ha hecho para cada sector que cuenta con medidor instalado.
4. Evaluación de las pérdidas de agua en el sistema durante el tiempo

Con la finalidad de aminorar las consecuencias que generan las pérdidas en la red de distribución, PUMAGUA ha identificado la zona con mayor índice de fugas y realizado las acciones pertinentes en cada una de ellas para reducir este índice.

Del año 2009 a la fecha, en los sectores hidráulicos 1, 3, 4 y 5 las pérdidas en la red de distribución han sido reducidas significativamente, siendo el sector hidráulico 2 el único en el que el nivel de pérdidas se ha duplicado. El resumen de cada uno de estos datos se muestra en la tabla resumen anexada en la Figura 12.

Haciendo uso de equipos para detección de fugas (un geófono y un correlador simple), se puso en marcha un programa, junto con personal de la Dirección General de Obras y Conservación (DGOC), de reducción de pérdidas en la red principal consistente en detectar, localizar y reparar fugas en líneas principales así como de sectorización y control de presiones.

Como resultado de estos trabajos, Balance Hidráulico ha establecido con la Dirección General de Obras y Conservación una vía de comunicación que consiste en solicitar apoyo a esta dirección cuando se detecta una posible fuga para asignar personal y ubicarla lo más pronto posible.

Adicionalmente, con el propósito de controlar presiones y fugas en la red de distribución, se ha instalado una válvula reguladora de presión, con lo cual se espera reducir las fugas hasta en 8 l/s. Actualmente se trabaja con la Dirección General de Obras y Conservación en las primeras pruebas de regulación de presiones.

El sistema de lectura ha permitido detectar fugas por 5.9 l/s en distintas dependencias de Ciudad Universitaria y Unidades Multidisciplinarias como FES Aragón.
Evaluación de pérdidas de agua en el sistema de agua potable.

<table>
<thead>
<tr>
<th>Sector Hidráulico</th>
<th>Cobertura de medición (%)</th>
<th>Pérdidas (l/s) 2009</th>
<th>Pérdidas (l/s) 2012</th>
<th>Pérdidas en edificios (l/s) 2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>77</td>
<td>20.0</td>
<td>10.0</td>
<td>0.5</td>
</tr>
<tr>
<td>2</td>
<td>65</td>
<td>5.0</td>
<td>10.0</td>
<td>2.0</td>
</tr>
<tr>
<td>3</td>
<td>69</td>
<td>19.0</td>
<td>8.0</td>
<td>3.2</td>
</tr>
<tr>
<td>4</td>
<td>69</td>
<td>1.6</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>5</td>
<td>56</td>
<td>13.0</td>
<td>10.0</td>
<td>0.2</td>
</tr>
<tr>
<td>TOTAL</td>
<td>58.6</td>
<td>38.0</td>
<td>5.9</td>
<td></td>
</tr>
</tbody>
</table>

D. Análisis de mediciones

Para el periodo 2011-2012, la población total en Ciudad Universitaria es de 153,280 habitantes distribuidos en 120 dependencias con las que cuenta el campus. Tomando en cuenta el uso de las instalaciones y el personal que labora en ellas, Ciudad Universitaria ha sido clasificada en cinco núcleos de población; siendo estos:

1. Dependencias Docentes
2. Dependencias de Investigación
3. Dependencias Administrativas
4. Dependencias Culturales
5. Dependencias de Servicios

Las estadísticas de población han sido proporcionadas por la Dirección General de Administración Escolar y la Dirección General de Personal, mostrados a continuación en la Tabla 4 y 5 respectivamente.

La distribución demográfica es claramente mayoritaria en población escolar en Ciudad Universidad siendo esta el 83%, mientras la población docente alcanza el 17% del total, datos mostrados en la siguiente grafica.

Figura 14. Distribución de la Población en Ciudad Universitaria 2012.
Ciudad Universitaria cuenta con tres pozos de extracción para el abastecimiento de agua potable con gastos discrepantes. El gasto mensual medio para el año 2012 obtenido por PUMAGUA muestra los siguientes resultados: Pozo Multifamiliar 128 605 m3, Pozo de Vivero Alto 52 594 m3, Pozo de química 22 629 m3

Ciudad Universitaria cuenta con un inventario de 178 equipos de micro medición, distribuidos en las 120 entidades académicas del campus. La cobertura actual de medición asciende al 68% de lo proyectado por PUMAGUA.

<table>
<thead>
<tr>
<th>Tabla 5. Equipos de Micromedición en Ciudad Universitaria.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SH1</td>
</tr>
<tr>
<td>Instituto de Ingeniería</td>
</tr>
<tr>
<td>Torre de Ingeniería</td>
</tr>
<tr>
<td>Comedor Aula y Otra</td>
</tr>
<tr>
<td>Facultad de Medicina Veterinaria y Zootecnia</td>
</tr>
<tr>
<td>Instituto de Geología</td>
</tr>
<tr>
<td>Instituto de Genética</td>
</tr>
<tr>
<td>Instituto de Química</td>
</tr>
<tr>
<td>Instituto de Geografía</td>
</tr>
<tr>
<td>Coordinación de la Investigación Científica</td>
</tr>
<tr>
<td>Instituto de Astronomía</td>
</tr>
<tr>
<td>Instituto de Matemáticas</td>
</tr>
<tr>
<td>Instituto de Ciencias del Mar y Limnología</td>
</tr>
<tr>
<td>Coordinación de Estudios de Posgrado</td>
</tr>
<tr>
<td>Centro de Enseñanza de Lenguas Extranjeras</td>
</tr>
<tr>
<td>Instituto de Fisiología Celular</td>
</tr>
<tr>
<td>Facultad de Medicina</td>
</tr>
<tr>
<td>Facultad de Química</td>
</tr>
<tr>
<td>Instituto de Física</td>
</tr>
<tr>
<td>Instituto de Astronomía</td>
</tr>
<tr>
<td>Instituto de Geografía</td>
</tr>
<tr>
<td>Coordinación de la Investigación Científica</td>
</tr>
<tr>
<td>Instituto de Astronomía</td>
</tr>
<tr>
<td>Instituto de Matemáticas</td>
</tr>
<tr>
<td>Instituto de Ciencias del Mar y Limnología</td>
</tr>
<tr>
<td>Coordinación de Estudios de Posgrado</td>
</tr>
<tr>
<td>Centro de Enseñanza de Lenguas Extranjeras</td>
</tr>
<tr>
<td>Instituto de Fisiología Celular</td>
</tr>
<tr>
<td>Facultad de Medicina</td>
</tr>
<tr>
<td>Facultad de Química</td>
</tr>
<tr>
<td>Instituto de Física</td>
</tr>
<tr>
<td>Instituto de Astronomía</td>
</tr>
<tr>
<td>Instituto de Geografía</td>
</tr>
<tr>
<td>Coordinación de la Investigación Científica</td>
</tr>
<tr>
<td>Instituto de Astronomía</td>
</tr>
<tr>
<td>Instituto de Matemáticas</td>
</tr>
<tr>
<td>Instituto de Ciencias del Mar y Limnología</td>
</tr>
<tr>
<td>Coordinación de Estudios de Posgrado</td>
</tr>
<tr>
<td>Centro de Enseñanza de Lenguas Extranjeras</td>
</tr>
<tr>
<td>Instituto de Fisiología Celular</td>
</tr>
<tr>
<td>Facultad de Medicina</td>
</tr>
<tr>
<td>Facultad de Química</td>
</tr>
<tr>
<td>Instituto de Física</td>
</tr>
<tr>
<td>Instituto de Astronomía</td>
</tr>
<tr>
<td>Instituto de Geografía</td>
</tr>
<tr>
<td>Coordinación de la Investigación Científica</td>
</tr>
<tr>
<td>Instituto de Astronomía</td>
</tr>
<tr>
<td>Instituto de Matemáticas</td>
</tr>
<tr>
<td>Instituto de Ciencias del Mar y Limnología</td>
</tr>
<tr>
<td>Coordinación de Estudios de Posgrado</td>
</tr>
<tr>
<td>Centro de Enseñanza de Lenguas Extranjeras</td>
</tr>
<tr>
<td>Instituto de Fisiología Celular</td>
</tr>
<tr>
<td>Facultad de Medicina</td>
</tr>
<tr>
<td>Facultad de Química</td>
</tr>
<tr>
<td>Instituto de Física</td>
</tr>
<tr>
<td>Instituto de Astronomía</td>
</tr>
<tr>
<td>Instituto de Geografía</td>
</tr>
<tr>
<td>Coordinación de la Investigación Científica</td>
</tr>
<tr>
<td>Instituto de Astronomía</td>
</tr>
<tr>
<td>Instituto de Matemáticas</td>
</tr>
<tr>
<td>Instituto de Ciencias del Mar y Limnología</td>
</tr>
<tr>
<td>Coordinación de Estudios de Posgrado</td>
</tr>
<tr>
<td>Centro de Enseñanza de Lenguas Extranjeras</td>
</tr>
</tbody>
</table>

2 Programa de Manejo Uso y Reúso del Agua en la UNAM.
Los equipos de micro medición se encuentran ubicados en los cinco sectores hidráulicos en los que fue dividida la Ciudad universitaria para realizar el análisis de las mediciones de consumo en cada uno de ellas.

La cobertura actual de equipos de micro medición instalados en el campus, permite a PUMAGUA obtener y actualizar mensualmente el consumo de 169 dependencias con la finalidad de conocer el uso del agua en sus instalaciones.

Dentro de los cinco Sectores Hidráulicos (S.H.), se han identificado las dependencias que reportan la mayor demanda de agua potable para sus instalaciones. Siendo estas:

En el SH1, de acuerdo a la Figura 11; el consumo promedio mensual del sector es de 17, 113.84 m3. La dependencia con mayor consumo es la Dirección General de Actividades Deportivas y Recreativas con el 27% del suministro mensual y un consumo de 4,300 m3.

En el SH2, de la Figura 8; el consumo promedio mensual es de 6, 515.76m3. Para este sector, tres son las dependencia con mayor consumo, en orden cronológico: la Dirección General de Orientación y Servicios Educativos con 17.5%, Biblioteca Central con 17% y finalmente la Facultad de Arquitectura con 16.9%.

En el SH3, de acuerdo a la Figura 9; el consumo promedio mensual es de 8039.7 m3. En este sector la dependencia con mayor consumo es Tienda UNAM perteneciente a la Dirección General de Servicios Administrativos con 56.4% y un consumo mensual de 4534.5m3, que en comparación con La Dirección General de Actividades Deportivas y Recreativas resultan ser muy similares.

En el SH4, de la Figura 10, el consumo promedio mensual es de 3,208.3m3. En este sector resulta ser Talleres de Conservación perteneciente a la Dirección General de Obras y Conservación la dependencia que utiliza el 50.25% del suministro mensual con un consumo de 1,612.2m3.

En el SH5, observando la Figura 11, el consumo promedio mensual es de 7, 730.45m3. En este sector las dependencias con mayor consumo son la Dirección General de Actividades Deportivas y Recreativas con el 31.68% y UNIVERSUM con 21.57%.

A continuación se muestra los gráficos con el promedio mensual para cada una de las dependencias que componen los cinco sectores hidráulicos de Ciudad Universitaria:
E. Usos del agua en Ciudad Universitaria

Como se describió en el subtema I.1, en Ciudad Universitaria han sido identificados cinco núcleos de población. Partiendo de la identificación del tipo de población y la clasificación de las dependencias en los Sectores Hidráulicos ha sido posible unificar ambas estadísticas.

El producto de este análisis nos conduce a conocer como es usada el agua en Ciudad Universitaria y poder percibir de manera directa como se distribuye el agua en el campus.

La recopilación de las mediciones en los equipos de micro medición en las dependencias y el agrupamiento de estas a partir de la población nos permiten visualizar los núcleos y sus consumos mensuales.

<table>
<thead>
<tr>
<th>Núcleos de Población</th>
<th>Suministro (m3) *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependencias Docentes</td>
<td>12,993.8</td>
</tr>
<tr>
<td>Dependencias de Investigación</td>
<td>10,504.6</td>
</tr>
<tr>
<td>Dependencias Administrativas</td>
<td>20,374.1</td>
</tr>
<tr>
<td>Dependencias Culturales</td>
<td>2,023.5</td>
</tr>
<tr>
<td>Dependencias de Servicios</td>
<td>5,705.2</td>
</tr>
</tbody>
</table>

* Consumo mensual para el mes de Octubre del 2012, cobertura del 70% en micro medición.
Partiendo de la Figura 12 en la que se muestra la cobertura actual en un 70%, se plantean los siguientes escenarios planteando una cobertura en el 100% en la medición de los suministros a las dependencias.

Figura 17. Usos del Agua en Ciudad Universitaria previstos para el 100% de cobertura. Fuente: PUMAGUA 2012.

El escenario previsto es el aumento en 20,000 m3 en el suministro a las Dependencias Docentes tomando en cuenta el análisis histórico del consumo en ellas, así como las entidades faltantes de este núcleo por medir.

<table>
<thead>
<tr>
<th>PUMAGUA</th>
<th>Coordinación de Balance Hidráulico</th>
<th>Usos del agua en Ciudad Universitaria (Previsto para el 100% de cobertura)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Núcleos de Población</td>
<td>Suministro (m3)*</td>
<td></td>
</tr>
<tr>
<td>Dependencias Docentes</td>
<td>32993.8</td>
<td></td>
</tr>
<tr>
<td>Dependencias de Investigación</td>
<td>10504.6</td>
<td></td>
</tr>
<tr>
<td>Dependencias Administrativas</td>
<td>20374.1</td>
<td></td>
</tr>
<tr>
<td>Dependencias Culturales</td>
<td>2023.5</td>
<td></td>
</tr>
<tr>
<td>Dependencias de Servicios</td>
<td>5705.2</td>
<td></td>
</tr>
<tr>
<td>Otras Dependencias</td>
<td>3000</td>
<td></td>
</tr>
</tbody>
</table>

* Consumo mensual para el mes de Octubre del 2012, cobertura del 100% en micromedición.
Se incluye además, un núcleo adicional denominado “Otras Dependencias” en el cual se pronostica un suministro de 3,000 m³ teniendo el 100% de cobertura.

Los cambios más representativos se observan en las Dependencias Docentes y Administrativas, la primera aumentando su consumo en un 17%, mientras que la segunda disminuye en un 12%. En general la mayoría de las dependencias muestra una tendencia a la baja en el porcentaje de uso del agua, no en la disminución del consumo en las instalaciones.

F. Control de presiones

Para contribuir en la reducción de las pérdidas físicas de agua en el sistema de distribución de Ciudad Universitaria e incrementar su eficiencia, PUMAGUA a través de la coordinación de Balance Hidráulico sugirió a la Dirección General de Obras y Conservación (DGOC) efectuar la sectorización y control de presiones en este campus, para lo cual se establecieron cuatro etapas:

- **Etapas 1.** Modelación del sistema de agua potable
- **Etapas 2.** Conformación física de los sectores hidráulicos
- **Etapas 3.** Instalación y puesta en marcha de equipos de medición
- **Etapas 4.** Puesta en marcha de los equipos de control de presiones

A continuación se describen de manera breve las etapas mencionadas líneas arriba, centrándose el interés en la última de ellas debido a que los avances en los trabajos se sectorización y control de presiones se ubican precisamente en esta etapa.
Etapas 1.- Modelación del sistema de agua potable

Los modelos de simulación matemática son la base para el cálculo hidráulico para diferentes estados que se producen en una red de distribución. Del producto de estas simulaciones se extraen resultados que serán considerados en la planificación, operación y gestión de la red. Es importante tener en cuenta que el problema de análisis está resuelto actualmente a través de programas de cómputo si se dispone de datos, situación que normalmente no ocurre. Para afrontar este tipo de obstáculos, el análisis hidráulico de las redes de distribución puede dividirse en dos: red de distribución nueva y otra aquella que se encuentre en servicio, tal es el caso de la red de agua potable de Ciudad Universitaria.

Etapas 2.- Conformación física de los sectores hidráulicos

Para la ejecución de los trabajos de sectorización de la red de distribución se realizaron en coordinación estrecha con la DGOyC las siguientes actividades:

1. Se llevó a cabo una inspección en campo de los sectores propuestos, validando aquellas válvulas y cruceros a seccionar durante los trabajos de sectorización.

2. En aquellos casos en donde no existió alguna válvula de seccionamiento requerida, se realizó el levantamiento de las condiciones físicas y las obras civiles que se requerían para la instalación de las mismas.

3. Se identificaron en el plano aquellos puntos donde se pretende instalar cada válvula reguladora de presión. Se realizó el levantamiento en campo de estos puntos estratégicos verificando que exista el crucero indicado en el plano y por otro lado, validando el punto en función de las condiciones físicas para la instalación.

Una vez terminados los recorridos de verificación y validación de las válvulas de seccionamiento y de las ubicaciones de los puntos de instalación de las VRP, se realizaron las pruebas en campo de confirmación de cada sector. Para lo anterior se ejecutaron las siguientes actividades:

a) Se aisló cada sector cerrando todas las válvulas de seccionamiento correspondientes comprobando que no existe suministro de agua por algún punto desconocido por los operadores de la red debido a tuberías que no estén indicadas en el plano.

b) Se hicieron pruebas de presión cero, para evitar el que se purgue la tubería.

c) Se instaló un medidor portátil en el punto donde se propone instalar la VRP, durante siete días consecutivos.

d) Con los curvas de consumo obtenidos con el medidor ultrasónico, se propuso el diámetro de la VRP para cada sector.

Esta metodología fue aplicada en cada sector hidráulico en colaboración con personal de la red de agua (ver ilustración 8). Estas actividades dieron inicio el pasado 30 de Mayo de 2009 y los resultados nos han mostrado la magnitud del problema a resolver.
Etapa 3.- Instalación y puesta de equipos de medición

Con base en la propuesta de sectorización, se determinó la instalación de equipos de medición en el punto de suministro en los sectores sugeridos así como equipos de control de presiones para el caso de los distritos hidráulicos 1 y 3. Las propuestas de instalación de los equipos fueron realizadas por el PUMAGUA y la instalación se realizó por parte de personal de la DGOC. En la Tablas 2 y 3 se muestra el avance en relación a la instalación de estos equipos.

Etapa 4.- Puesta en marcha de los equipos de control de presiones

La puesta en marcha de los equipos de control de presiones o válvulas reguladoras de presión requiere de dos datos:

A. Los horarios de apertura y cierre de las válvulas reguladoras de presión.
B. La presión mínima nocturna de trabajo.

Para la determinación de los horarios de apertura y cierre de las válvulas reguladoras de presión se procedió a realizar un análisis de las mediciones disponibles en los sectores 1 y 3. Con base en estos, se llegó a las siguientes conclusiones:

Con base en las Ilustraciones anteriores, el patrón de demanda correspondiente a los sectores hidráulicos 1 y 3 sugiere lo siguiente, ver Figuras 16 y 17:

1. Sector hidráulico 1: La demanda inicia a partir de las **06:00 horas y concluye a las 22:00 horas**, sus puntos máximos de consumo se registran a las 08:00 y 14:00 horas.
2. Sector hidráulico 3: La demanda inicia a las **7:00 horas y concluye a las 23:00 horas**, sus puntos máximos de consumo se registran entre las 14:00 y 15 horas.
Figura 22. Consumo en el sector hidráulico 1.
Conclusiones y recomendaciones.

1) Actualmente los avances en los trabajos de sectorización y control de presiones en Ciudad Universitaria se ubican en la última fase.

2) El ahorro efectivo de agua por la reducción de presiones sería de: 8 l/s en el sector hidráulico 1 (8h y reduciendo la presión 2.4 kg/cm²) más 6 l/s para el caso del sector hidráulico 3 (8h y reduciendo la presión al menos 2 Kg/cm²) igual a 402 m³ por día, 12,000 m³ al mes.

3) La totalidad de los equipos de medición y control de presiones se encuentran instalados. Sólo se encuentran en operación los medidores correspondientes a los sectores 2 y 3.

4) La puesta en marcha de los equipos de control de presiones (VRP) requieren de dos datos: horarios de cierre y apertura así como las presiones a reducir.

5) Para el caso de sector hidráulico 1 el análisis al patrón de demanda sugiere la reducción nocturna de presiones durante 8 horas: a partir de las 22:00 horas y concluye a las 06:00 horas.

6) Para el caso de sector hidráulico 3 el análisis al patrón de demanda sugiere la reducción nocturna de presiones durante 8 a partir de las 23:00 horas y concluye a las 07:00 horas.

7) El ahorro efectivo de agua por la reducción de presiones sería de: 8 l/s en el sector hidráulico 1 (8h y reduciendo la presión 2.4 kg/cm2) más 6 l/s para el caso del sector hidráulico 3 (8h y reduciendo la presión al menos 2 Kg/cm2) igual a 402 m3 por día.

G. Balance Hidráulico 2013

Para la distribución del agua, la red hidráulica de Ciudad Universitaria se ha dividido en 5 zonas de servicio (Sectores Hidráulicos). Partiendo de esta clasificación, se ha establecido el análisis del consumo de agua en el campus para la temporada de riego y de lluvias.

La Figura 22 nos muestra el suministro de agua para la temporada de riego, partiendo de las mediciones realizadas por PUMAGUA, podemos concluir que en esta temporada; el balance hidráulico queda de la siguiente manera: Se inyectan 85 l/s al sistema, se consumen 25 l/s en las entidades universitarias, 22 l/s son utilizados para el riego de las áreas verdes; se pierden 35 l/s (45% del suministro). Se vierten al drenaje 24 l/s, de los cuales al colector de la Planta de Tratamiento de Aguas Residuales de Cerro del Agua solo llegan 19 l/s misma cantidad que es tratada y reutilizada para el riego de áreas verdes del campus.

La Figura 23 nos muestra el suministro para la época de lluvias, cabe mencionar que en esta época del año el riego de áreas verdes es reducido en su totalidad; por lo cual el balance hidráulico queda de la siguiente manera: Se inyectan 65 l/s al sistema, se consumen 25 l/s en las entidades universitarias, 0 l/s son utilizados para el riego de las áreas verdes; se pierden 35 l/s. Se vierten al drenaje 24 l/s y 19 l/s son reutilizados.

El nivel de pérdidas en ambos casos, representa de acuerdo a esta información el 41 % del suministro. Lo anterior representa un sobre costo de más en energía eléctrica, potabilización, manejo y distribución del agua.
Balance Hidráulico. Ciudad Universitaria, UNAM
Temporada de riego

Riego agua potable 22 l/s
Demanda de agua época de riego 85 l/s

Consumo 25 l/s

Areas verdes

Perdidas 35 l/s (41 % del suministro)

Entidades Universitarias

Perdidas edificios 5.9 l/s (23 % del consumo y 7 % del suministro al sistema)

Riego agua residual tratada 19 l/s*

Agua Residual Tratada reutilizada 19 l/s

Gasto colector: 24 l/s.*

PTAR Cerro del agua

Colector de aguas residuales (Zona Central)

* FUENTE: Dirección General de Obras y Conservación

Balance Hidráulico. Ciudad Universitaria, UNAM
Época de lluvias

Gasto colector: 24 l/s.*

PTAR
Cerro del agua

19 l/s *

Áreas verdes

Consumo 25 l/s
Entidades Universitarias

Demanda de agua 63 l/s

Riego agua potable 0 l/s

Agua Residual Tratada reutilizada 19 l/s

Perdidas 35 l/s (41 % del suministro)

Perdidas edificios 5.9 l/s (23 % del consumo y 9.3 % del suministro al sistema)

Riego agua residual tratada 0 l/s *

* FUENTE: Dirección General de Obras y Conservación

H. Programa de muebles de baño

En relación a los trabajos realizados correspondientes a el Programa de sustitución de muebles de baño, con el objetivo de alcanzar las metas propuestas en el programa de uso y re uso del agua en la UNAM, se han llevado acabo los trabajos que permitan tener un mejor manejo del recurso, así como la implementación de las recomendaciones necesarias en las diferentes entidades de la Universidad, con el fin de cumplir las metas propuestas.

Se ha dado continuidad al monitoreo y sustitución de muebles de baño de bajo consumo, se ha llevado a cabo la revisión en algunas entidades de Ciudad Universitaria, que instalaron muebles ahorradores de bajo consumo desde el inicio del programa, se han analizado el funcionamiento y desempeño de estos, en los cuales se puede ver que han tenido que se mantienen dentro de las especificaciones que el programa estableció desde el inicio, pasando todas las pruebas realizadas, por lo que nos da la seguridad de seguir recomendando los muebles propuestos, algunos muebles de baño solo presentaron problemas menores, todos se encuentran funcionando sin fugas, algunos no tienen baterías por lo que se aviso de manera inmediata a los jefes de servicio para resolver este inconveniente, para el buen uso de las instalaciones.

Por otra parte se tienen sustituidos un total de 4,103 muebles ahorradores con especificaciones de PUMAGUA, de los cuales se sustituyeron en el año 2009 que fue el inicio del programa un total de 756 muebles, en el año 2010 se llego a la cantidad de 2, 232, en el año 2011 se llego a un total de 3,711 muebles de baño y en este año 2012 se ha llegado a 4, 103 muebles de baño en toda la UNAM, de estos 4,103 muebles de baño 676, corresponden a entidades externas como son FES Acatlán, FES Zaragoza, FES Iztacala, Fes Aragón, Museo del Chopo, Museo MUAC, ENP 8, Escuela Nacional de Música, Campus Morelia.

Por lo tanto, del total de muebles de baño que se han sustituido en la UNAM, el cambio realizado en entidades de Ciudad Universitaria corresponde a 3,427 muebles de baño ahorradores, quedando así una cantidad de 676 muebles de baño sustituidos en entidades externas.
VI. Calidad del Agua 2013

A. Objetivo
Monitorear la calidad del agua para uso y consumo humano y del agua residual tratada a partir de un programa permanente de vigilancia, verificando el cumplimiento de la normatividad mexicana vigente, y recomendando medidas necesarias de seguridad que deberá adoptar el abastecedor (Dirección General de Obras y Conservación de la UNAM) para asegurar la adecuada calidad del agua para sus distintos usos: agua para uso y consumo humano y agua residual tratada para riego de áreas verdes. Así también, evaluar la calidad del agua pluvial que se infiltra para recarga artificial del acuífero a través de pozos de absorción en el campus Ciudad Universitaria.

B. Agua para uso y consumo humano.
Con el fin de asegurar la calidad del agua para uso y consumo humano que se suministra a través de la red de distribución en el campus Ciudad Universitaria, se verificó el cumplimiento de la norma NOM-127-SSA1-1994, modificada en el 2000, en la cual se establecen los límites permisibles de calidad del agua para uso y consumo humano. Para ello, se llevó a cabo un monitoreo integral permanente de la calidad del agua en el campus Ciudad Universitaria, 2013. 1. Fuente de abastecimiento de agua para uso y consumo humano en el campus Ciudad Universitaria.

El abastecimiento de agua destinada para uso y consumo humano en el campus Ciudad Universitaria proviene de fuente subterránea, y se obtiene a partir de tres pozos de extracción (Pozo de Química, Pozo de Multifamiliar y Pozo del Vivero Alto) concesionados a la Universidad Nacional Autónoma de México (UNAM), y cuya responsabilidad esta delegada a la Dirección General de Obras y Conservación de la UNAM.
En cada pozo se encuentra instalado un sistema automático de desinfección con hipoclorito de sodio al 13%.

La primera parte del monitoreo integral permanente es el monitoreo de la calidad del agua a pie de pozo (antes del sistema de desinfección).

<table>
<thead>
<tr>
<th>Período de monitoreo</th>
<th>Periodicidad del muestreo</th>
<th>N° de muestras analizadas</th>
<th>Parámetros monitorreados</th>
</tr>
</thead>
<tbody>
<tr>
<td>Febrero a noviembre de 2013</td>
<td>mensual</td>
<td>Pozo Química 9</td>
<td>Parámetros fisicoquímicos: nitratos, pH, turbiedad, y sólidos disueltos totales.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pozo Multifamiliar 9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pozo Vivero Alto 9</td>
<td>Parámetros microbiológicos: coliformes fecales y coliformes totales.</td>
</tr>
</tbody>
</table>

Durante el periodo de monitoreo los parámetros fisicoquímicos analizados nitratos, turbiedad, sólidos disueltos totales y pH, se mantuvieron dentro de los límites establecidos en la norma mexicana vigente de agua potable NOM-127-SSA1-1994 (2000)[Ver anexo de Calidad del Agua, figuras 7 a 10, y tablas 1 a 4]. Así mismo, los parámetros microbiológicos se mantuvieron dentro de norma, excepto en el mes de septiembre cuando se detectó presencia de coliformes fecales (4 UFC/100 ml) y coliformes totales (4 UFC/100 ml) en el pozo de extracción de Vivero Alto, evento al que se dio seguimiento y no volvió a presentarse [Ver anexo de Calidad del Agua, figuras 11 y 12, y tablas 5 y 6].
A partir de los resultados obtenidos [¡Error! No se encuentra el origen de la referencia. y ¡Error! No se encuentra el origen de la referencia.], se concluye que los pozos de abastecimiento de agua para uso y consumo humano mantienen una calidad aceptable en los parámetros fisicoquímicos y microbiológicos analizados. Se resalta que estos resultados son de muestreos realizados a pie de pozo, antes de la desinfección con hipoclorito de sodio.

2. **Tanques de almacenamiento de agua para uso y consumo humano en el campus Ciudad Universitaria.**

El agua que se extrae para uso y consumo humano es almacenada en tres tanques: Tanque Alto y Tanque Bajo donde se almacena el agua que proviene del pozo de Química y el pozo de Multifamiliar, y el Tanque Vivero Alto donde se almacena el agua que proviene del pozo de Vivero Alto, ¡Error! No se encuentra el origen de la referencia..

![Ubicación de los tanques de almacenamiento de agua para uso y consumo humano en el campus Ciudad Universitaria, 2013.](image)

La segunda parte del monitoreo integral permanente, es el monitoreo de la calidad del agua en los tanques de almacenamiento [¡Error! No se encuentra el origen de la referencia.]. Un total de 25 muestras fueron analizadas, los resultados completos se presentan en el anexo de Calidad del Agua, figuras 13 a 19 y tablas 7 a 13.

Se resalta que en los meses de febrero y marzo el Tanque Bajo estuvo en mantenimiento, por lo que no fue monitoreado en estos dos meses.

Tabla 9. Datos del monitoreo permanente de calidad del agua para uso y consumo humano en tanques de almacenamiento, 2013.

<table>
<thead>
<tr>
<th>Periodo de monitoreo</th>
<th>Periodicidad del muestreo</th>
<th>N° de muestras analizadas</th>
<th>Parámetros monitoreados</th>
</tr>
</thead>
<tbody>
<tr>
<td>Febrero a noviembre de 2013</td>
<td>Mensual</td>
<td>Tanque Bajo</td>
<td>7</td>
</tr>
</tbody>
</table>
Durante el periodo de monitoreo los parámetros fisicoquímicos analizados nitratos, turbiedad, sólidos disueltos totales, y pH se mantuvieron dentro de los límites permisibles de agua apta para uso y consumo humano establecidos en la norma mexicana vigente NOM-127-SSA1-1994(2000) [¡Error! No se encuentra el origen de la referencia.]. A diferencia del parámetro fisicoquímico cloro residual libre, el cual se detectó fuera de lo establecido en norma en el Tanque Bajo, Tanque Alto y Tanque Vivero Alto, con un porcentaje de incumplimiento de la norma en las muestras analizadas de 28.6% (2/7 muestras), 22.2%(2/9 muestras) y 77.8%(7/9 muestras) respectivamente.

El parámetro cloro residual libre, presentó variaciones que van desde 0.00 mg/L a 2.50 mg/L. De esta manera, el porcentaje de incumplimiento en las muestras analizadas en el Tanque Bajo (28.6%) se debe a concentraciones de cloro residual libre detectadas por encima (14.3%) y por debajo (14.3%) del límite establecido en la NOM-127-SSA1-1994 (2000). Mientras el porcentaje de incumplimiento en las muestras analizadas en el Tanque Alto (22.2%) se debe a concentraciones detectadas por encima (11.1%) y por debajo (11.1%) de lo establecido en la norma. En el caso del Tanque Vivero Alto las concentraciones de cloro residual libre en las muestras analizadas estuvieron por arriba del límite mínimo de la norma, es decir que hubo desinfección, sin embargo, las concentraciones estuvieron arriba del límite máximo con un incumplimiento de la norma en el 77.8% de las muestras analizadas. Por lo que se recomienda controlar la inyección de hipoclorito de tal manera que se logre mantener las concentraciones de cloro residual libre dentro del límite de norma (0.2 a 1.5 mg/L) [¡Error! No se encuentra el origen de la referencia.].
En cuanto a los parámetros microbiológicos coliformes fecales y coliformes totales, no se detectó su presencia en ninguno de los 25 muestreos realizados en los 3 tanques de almacenamiento, cumpliendo con la norma [Error! No se encuentra el origen de la referencia.].
NOM-127-SSA1-1994 (2000), en la cual se establece que estos no deben estar presentes en el agua para uso y consumo humano.

El incumplimiento de la normatividad en el parámetro de cloro residual libre refleja una deficiencia en la operación del sistema de desinfección durante el periodo de monitoreo en 2013, aun así los resultados microbiológicos obtenidos indican que el agua que se distribuye para uso y consumo humano se encuentra libre de contaminación fecal. Sin embargo, es muy importante que la Dirección General de Obras y Conservación mantenga una operación eficiente de los sistemas de desinfección automática con hipoclorito de sodio instalados actualmente en cada pozo, de tal forma que se garanticen concentraciones de cloro residual libre dentro del límite permisible (0.2 a 1.5 mg/L) de la NOM-127-SSA1-1994(2000), para asegurar la inocuidad del agua para uso y consumo humano que se suministra a la población universitaria.

3. Monitoreo en tiempo real de la calidad del agua para uso y consumo humano en el campus Ciudad Universitaria.

Parte del programa permanente de vigilancia es el monitoreo en tiempo real de la calidad del agua para uso y consumo humano, ¡Error! No se encuentra el origen de la referencia.. El monitoreo en tiempo real se realiza mediante un sistema de sensores en línea, instalado en el Instituto de Ingeniería de la UNAM, el cual desde el año 2009 tiene la finalidad de medir en tiempo real la calidad del agua para uso y consumo humano que se suministra en el sector hidráulico 3 del campus Ciudad Universitaria, sector que hasta la fecha se abastece directamente del pozo de extracción de Multifamiliar sin pasar por ninguno de los tanques de almacenamiento, a excepción en los casos en que el pozo se encuentra apagado.
Tabla 10. Datos del monitoreo en tiempo real de la calidad del agua para uso y consumo humano en la red de distribución del campus Ciudad Universitaria, 2013.

<table>
<thead>
<tr>
<th>Período de monitoreo</th>
<th>Periodicidad del muestreo</th>
<th>N° de días monitoreados</th>
<th>Parámetros monitoreados</th>
</tr>
</thead>
<tbody>
<tr>
<td>Febrero a noviembre de 2013</td>
<td>Cada 5 minutos</td>
<td>325 días</td>
<td>Parámetros fisicoquímicos: cloro residual libre, nitratos, pH, turbiedad, conductividad y temperatura.</td>
</tr>
</tbody>
</table>

El sistema está conformado por 5 sensores con los cuales se miden 6 parámetros: cloro residual libre, nitratos, turbiedad, pH, conductividad y temperatura. Los sensores registran y almacenan datos cada 5 minutos, lo cual genera 288 registros por día para cada parámetro.

En las figuras 1 a 6 del anexo de Calidad del Agua se presenta gráficamente el comportamiento mensual de cada uno de los parámetros monitoreados, indicando la concentración máxima y la concentración mínima para cada caso. Los resultados del monitoreo en línea durante el periodo de enero a noviembre de 2013 se presentan en el anexo de Calidad del Agua, tablas 14 a 25.

Los parámetros temperatura y conductividad son complementarios ya que no están considerados en la norma, sin embargo, los cambios significativos en aumento en las mediciones de conductividad y temperatura pueden ser indicadores de eventos puntuales de contaminación, y de acuerdo al comportamiento observado en el periodo de monitoreo de 2013, no se observaron cambios significativos en ninguno de estos dos parámetros [Ver anexo de calidad del agua, figuras 5 y 6].

En el caso del cloro residual libre se detectaron eventos donde se rebasaron los límites (0.2 a 1.5 mg/L) permisibles establecidos en la NOM-127-SSA1-1994 (2000). Se detectaron variaciones que van desde 0.00 mg/L hasta 3.20 mg/L. Se presentaron eventos de concentración de cloro residual libre menor al límite mínimo y mayor al límite máximo en el mismo día, lo que resultó en un porcentaje de 47.7% (155/325 días) de días monitoreados con eventos de concentración de cloro residual libre por fuera de lo establecido en la NOM-127-SSA1-1994 (2000). De los cuales, en el 40% (130/325 días) de los días se detectó eventos por debajo del límite mínimo y en el 12% (39/325 días) por encima del límite máximo, ¡Error! No se encuentra el origen de la referencia.

Agosto fue el único mes en el que se detectó en todo momento concentraciones de cloro residual libre por encima del límite mínimo, es decir que durante ese mes los sistemas de desinfección automática instalados en los pozos de extracción de Multifamiliar y Química, inyectaron hipoclorito al 13% de forma continua en el agua que se extraía de los pozos y bombeaba a la red de distribución. El único problema fue que en el 6.5% de los días monitoreados en agosto se detectaron eventos de cloro residual libre por arriba del límite máximo [¡Error! No se encuentra el origen de la referencia.], por lo que se debe estabilizar la inyección de hipoclorito de sodio para tener concentraciones de cloro libre acorde a lo establecido en norma (0.2 a 1.5 mg/L).

Figura 34. Porcentaje de días con eventos de concentración de cloro residual libre en la red de distribución del campus Ciudad Universitaria dentro y fuera de lo establecido en la norma de agua potable NOM-127-SSA1-1994 (2000) durante el periodo de monitoreo de 2
La figura anterior nos indica que marzo, abril, mayo, octubre y noviembre fueron los meses con el mayor porcentaje de días con eventos de concentración de cloro residual libre por debajo del límite mínimo de la norma NOM-127-SSA1-1994 (2000). En los tres primeros meses (marzo, abril y mayo) se debió a daño en las bombas de inyección de hipoclorito de sodio, lo cual le llevó al proveedor contratado por la Dirección General de Obras y Conservación hasta Julio de 2013 reparar. Mientras en los otros dos meses (octubre y noviembre) se debió a fallas en la operación del sistema de desinfección, específicamente por desconocimiento del manejo del sistema por parte de los operadores, y por problemas relacionados con burbujas de aire que impiden la inyección adecuada del hipoclorito, para lo cual se requiere de acciones correctivas inmediatas que garanticen la operación eficiente del sistema, tal como sucedió en el mes de agosto de 2013 cuando operó con una eficiencia del 100%.

Los resultados obtenidos del monitoreo en tiempo real reflejan la deficiencia en la operación del sistema de desinfección automática con hipoclorito de sodio instalado en el pozo de extracción de Multifamiliar. Es muy importante que la Dirección General de Obras y Conservación preste suficiente atención a la operación eficiente de este sistema de desinfección, de tal forma que se asegure la inocuidad del agua que se suministra a la población universitaria.

4. **Monitoreo puntual permanente en la red de distribución de agua para uso y consumo humano en el campus Ciudad Universitaria.**

La tercera parte del monitoreo integral permanente, es el monitoreo de la calidad del agua en la red de distribución del campus Ciudad Universitaria (antes de la entrada a edificios), ¡Error! No se encuentra el origen de la referencia.. Un total de 128 muestras fueron analizadas, los resultados completos se presentan en el anexo de Calidad del Agua, figuras 20 a 40 y tablas 26 a 32.

<table>
<thead>
<tr>
<th>Tabla 11. Datos del monitoreo permanente de calidad del agua para uso y consumo humano en la red de distribución del campus Ciudad Universitaria, 2013.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Período de monitoreo</td>
</tr>
<tr>
<td>Febrero a noviembre de 2013</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

- Distancia de recorrido del agua hasta el punto de consumo.
- Puntos prioritarios para la toma de muestra.
- Accesibilidad de los sitios de muestreo.
- Representatividad de la muestra.
- Resultados de programas de muestreo previos.
- La sectorización hidráulica en el campus Ciudad Universitaria.

Figura 35. Ubicación de puntos de monitoreo permanente de calidad del agua para uso y consumo humano en la red de distribución del campus Ciudad Universitaria, 2013.

Durante el periodo de monitoreo los parámetros fisicoquímicos analizados nitratos, turbiedad, sólidos disueltos totales, y pH se mantuvieron dentro de los límites permisibles de agua apta para uso y consumo humano establecidos en la norma mexicana vigente NOM-127-SSA1-1994 (2000). Mientras el parámetro fisicoquímico cloro residual libre se detectó fuera de lo establecido en norma en el 43.75% (56/128 muestras) de las muestras analizadas.

El parámetro cloro residual libre presentó variaciones que van desde 0.00 mg/L a 2.50 mg/L. De un total de 128 muestras analizadas en 14 puntos de la red de distribución durante el periodo de monitoreo de 2013, se detectaron concentraciones de cloro residual libre menor al límite mínimo en el 16.41% (21/128 muestras) y concentraciones de cloro residual libre mayor al límite máximo en el 27.34% (35/128 muestras), para un porcentaje total de incumplimiento de la norma NOM-127-SSA1-1994 (2000) en el parámetro de cloro residual libre en el 43.75% (56/128 muestras) de las muestras analizadas.
En cuanto a los parámetros microbiológicos coliformes fecales y coliformes totales, no se detectó su presencia en ninguno de los 128 muestreos realizados en los 14 puntos de monitoreo permanente en la red de distribución, cumpliendo con la norma NOM-127-SSA1-1994 (2000), en la cual se establece que estos no deben estar presentes en el agua para uso y consumo humano.

El incumplimiento de la normatividad en el parámetro de cloro residual libre en la red de distribución de agua para uso y consumo humano confirma los resultados obtenidos a partir del programa de vigilancia en los tanques de almacenamiento y de monitoreo en tiempo real, que indican una deficiencia en la operación de los sistemas de desinfección automática con hipoclorito de sodio, instalados en los pozos de extracción del campus Ciudad Universitaria. Se resalta que las mediciones de cloro residual libre detectadas por debajo del límite mínimo de la norma se deben exclusivamente a circunstancias en las que se presentaron fallas en la cloración y no debido a las distancias de recorrido del agua hasta el punto de consumo.

Aún cuando se detectaron estas deficiencias en el sistema de cloración, los resultados microbiológicos obtenidos en el monitoreo de la red de distribución indican que el agua que se distribuye para uso y consumo humano se encuentra libre de contaminación fecal.

Los resultados certificados de los 48 parámetros analizados por el Laboratorio Externo [Ver anexo de Calidad del Agua, Figuras 27 a 40], no evidenciaron contaminación alguna en los 6 puntos monitoreados de la red de distribución.

A excepción del parámetro cloro residual libre, los otros 47 parámetros fisicoquímicos y microbiológicos se encuentran dentro de los límites establecidos en la NOM-127-SSA1-1994 (2000). Se resalta que en el caso del parámetro yodo residual libre, los límites que se establecen en la norma solo aplican cuando la desinfección del agua se realiza con Yodo, ¡Error! No se encuentra el origen de la referencia..

En el punto de monitoreo Instituto de Ecología se detectó concentraciones de cloro residual libre (2.00 mg/L) por encima del límite máximo (1.5 mg/L) de la NOM-127-SSA1-1994 (2000). Mientras en la Dirección General de Servicios Médicos, se detectó concentraciones de cloro residual libre (0.15) por debajo del límite mínimo. Esto no indica que el agua deja de ser apta para consumo humano, pero si refleja eventos de suministro de agua sin desinfección, lo que pone en riesgo su inocuidad.

El análisis del Laboratorio Externo Certificado, coincide y soporta los resultados obtenidos en el monitoreo integral permanente del agua para uso y consumo humano en la red de distribución del campus Ciudad Universitaria en el año 2013, con lo cual se concluye que el agua que se distribuye es apta para uso y consumo humano (excluyendo las redes ubicadas después de cisternas de almacenamiento de agua potable en edificios). Sin embargo, se deben tomar acciones eficientes para la operación correcta de los sistemas de desinfección automática instalados en cada uno de los pozos de extracción, de tal manera que se asegure la calidad del agua que se suministra hasta su llegada al consumidor.

5. Monitoreo de cloro residual libre en cisternas de almacenamiento de agua para uso y consumo humano en edificios del campus Ciudad Universitaria.

La cuarta parte del monitoreo integral permanente, es el monitoreo de la calidad del agua en cisternas de almacenamiento de agua potable en edificios del campus Ciudad Universitaria.

Como bien se sabe, la calidad del agua para uso y consumo humano debe ser garantizada en cualquier punto de un sistema de abastecimiento. Por lo cual se debe asegurar un residual de cloro residual libre de acuerdo a los límites establecidos (0.2 – 1.5 mg/L) en la NOM-127-SSA1-1994 (2000), ya que éste es un parámetro que garantiza que no habrá crecimiento bacteriano en el agua, además es de fácil determinación.

El programa de monitoreo implementado contempla una evaluación mensual de las cisternas de almacenamiento que son exclusivas para uso y consumo humano en el Campus Universitario [¡Error! No se encuentra el origen de la referencia.]. De esta manera, en el periodo de febrero a noviembre de 2013 se realizaron un total de 484 mediciones de cloro residual libre en 54 cisternas de almacenamiento de agua para uso y consumo humano ubicadas en edificios del campus Ciudad Universitaria. Los resultados completos se presentan en el anexo de Calidad del Agua, figura 41 y tabla 33.
Figura 38. Ubicación de cisternas de almacenamiento de agua para uso y consumo humano en edificios del campus Ciudad Universitaria, 2013.

Durante el periodo de monitoreo de 2013 el parámetro cloro residual libre presentó variaciones que van desde 0.00 mg/L a 2.20 mg/L. Del total de 484 muestras analizadas en 54 cisternas de almacenamiento, se detectaron concentraciones de cloro residual libre menor al límite mínimo en el 14.5% (70/484 muestras) y concentraciones de cloro residual libre mayor al límite máximo en el 10.3% (50/484 muestras), para un porcentaje total de incumplimiento de la norma NOM-127-SSA1-1994 (2000) en el parámetro de cloro residual libre en el 24.8% (120/484 muestras) del total de muestras analizadas.

De las 54 cisternas monitoreadas, 5 cisternas que pertenecen al sector hidráulico 5 y que representan el 9.26% (5/54 cisternas) del total de cisternas, identificadas con la numeración 44, 48, 50, 51, y 53, fueron las únicas en las que se detectó en el 100% de los muestreos concentraciones de cloro residual libre dentro del límite establecido en la NOM-127-SSA1-1994 (2000).
En otras 8 cisternas (identificadas con la numeración 36, 37, 38, 40,45, 49, 52, y 54) que pertenecen al sector hidráulico 5 y que representan el 14.8% (8/54 cisternas) del total de cisternas, aunque no estuvieron en todo momento dentro del límite de norma en el parámetro cloro residual libre (0.2 a 1.5 mg/L), al menos se detectaron por arriba del límite mínimo, lo que garantiza que no se presente crecimiento bacteriano en el agua.

La razón por la que el 75.9% (41/54 cisternas) de las cisternas monitoreadas se detectaron con al menos una medición de concentración de cloro residual libre por debajo del límite mínimo (lo que se traduce en no desinfección del agua) establecido en la NOM-127-SSA1-1994 (2000), es por fallas en la operación del sistema de desinfección automática instalado en los pozos de extracción. Por lo tanto, se recomienda a los responsables de cada dependencia, tener los
mayores cuidados posibles en cuanto a limpieza, mantenimiento, ubicación, restricción del acceso, y seguimiento permanente del estado de su cisterna, no solo para evitar el crecimiento de microorganismos patógenos por la ausencia ocasional de desinfectante en el agua para uso y consumo humano, sino para evitar situaciones en las que se pueda contaminar porque se vierta accidentalmente algún material o químico, o por el ingreso de fauna nociva a la cisterna.

6. Bebederos de agua para consumo humano en el campus Ciudad Universitaria.

En el campus Ciudad Universitaria existen bebederos de agua para consumo humano instalados por iniciativa propia de las dependencias. En su gran mayoría cuentan con sistemas alternos de tratamiento.

El grupo de calidad del agua de PUMAGUA se ha dado a la tarea de iniciar desde octubre de 2013, el monitoreo de la calidad del agua para consumo humano que se suministra a través de bebederos [¡Error! No se encuentra el origen de la referencia.].

<table>
<thead>
<tr>
<th>Período de monitoreo</th>
<th>Periodicidad del muestreo</th>
<th>N° de muestras analizadas</th>
<th>Parámetros monitoreados</th>
</tr>
</thead>
<tbody>
<tr>
<td>Octubre a noviembre de 2013</td>
<td>Mensual</td>
<td>34 muestras</td>
<td>Parámetros físicoquímicos: cloro residual libre, nitratos, pH, turbiedad, y sólidos disueltos totales. Parámetros microbiológicos: coliformes fecales y coliformes totales.</td>
</tr>
</tbody>
</table>

Se seleccionaron 17 bebederos considerando los siguientes criterios [¡Error! No se encuentra el origen de la referencia.]:

- Uso del bebedero.
- Distancia de recorrido del agua hasta el punto de consumo.
- Puntos prioritarios para la toma de muestra.
- Accesibilidad.
- Representatividad de la muestra.
- La sectorización hidráulica en el campus Ciudad Universitaria.

De los 17 bebederos seleccionados, uno fue instalado por PUMAGUA y no cuenta con sistema alterno de tratamiento, ya que uno de los objetivos en los que ha venido trabajando PUMAGUA es asegurar agua bebible (agua potable) en el campus Ciudad Universitaria. Este bebedero en particular se viene monitoreando desde febrero del 2013.
Durante el periodo de monitoreo de los 17 bebederos, los parámetros fisicoquímicos analizados nitratos, turbiedad, sólidos disueltos totales, y pH se mantuvieron dentro de los límites permisibles de agua apta para consumo humano establecidos en la norma NOM-127-SSA1-1994 (2000). [Ver anexo de Calidad del Agua, Figuras 43 a 46, y Tabla 34]. En cuanto a los parámetros microbiológicos coliformes fecales y coliformes totales, no se detectaron en ninguna de las 34 muestras analizadas en los 17 bebederos, cumpliendo con la norma, en la cual se establece que deben estar ausentes en el agua de consumo humano [Ver anexo de calidad del agua, figuras 47 y 48 y tabla 35].

En cuanto al parámetro cloro residual libre, no se detectó en aquellos bebederos que contaban con sistema de tratamiento alterno que incluye declorador. Mientras en los otros bebederos se detectaron variaciones que van desde 0.00 mg/L a 2.20 mg/L [Ver anexo de calidad del agua, figura 42 y Tabla 34].

Los usuarios del bebedero de Pista de Calentamiento (instalado por iniciativa propia de la dependencia y el cual no cuenta con sistema alterno de tratamiento) manifiestan inconformidad porque dicen percibir concentraciones de cloro altas en el sabor del agua que consumen. Esto coincide con la medición de octubre en la que se detectó 1.94 mg/L de cloro residual libre, valor que se encuentra por encima del límite máximo (1.5 mg/L) establecido en la NOM-127-SSA1-1994 (2000).
En cuanto a los resultados del monitoreo (febrero a noviembre de 2013) del agua que se suministra en el bebedero instalado por PUMAGUA en el Instituto de Ingeniería, cabe decir que los parámetros fisicoquímicos analizados nitratos, turbiedad, sólidos disueltos totales, y pH, y los parámetros microbiológicos coliformes fecales y coliformes totales se detectaron dentro de los límites establecidos en la NOM-127-SSA1-1994 (2000) [Ver anexo de calidad del agua, figuras 20 a 40 y tablas 26 a 32]. Mientras el parámetro fisicoquímico cloro residual libre se detectó en concentraciones por debajo del límite mínimo de la norma en el 14,29% (1/7 muestras) de las muestras analizadas. Se resalta que no por este 14,29% el agua deja de ser apta para consumo humano, pero si refleja el eventual suministró de agua sin desinfección, poniendo en riesgo su inocuidad.

En noviembre de 2013, se solicitó a un Laboratorio Externo Certificado el muestreo y análisis del agua que se suministra en el bebedero instalado por PUMAGUA en el Instituto de Ingeniería, conforme a los parámetros establecidos en la norma de agua para consumo humano NOM-127-SSA1-1994 (2000). Los resultados indican que el agua del bebedero es apta para consumo humano [¡Error! No se encuentra el origen de la referencia.], lo cual coincide con los resultados del monitoreo permanente que se realiza desde febrero [Ver anexo de calidad del agua, figuras 20 a 40 y tablas 26 a 32].

Es primordial que la Dirección General de Obras y Conservación de la UNAM, establezca la operación del sistema de desinfección automática instalada en los pozos de extracción, con el fin de asegurar la inocuidad del agua que se distribuye para consumo humano.

C. Agua pluvial

1. Pozos de absorción de agua pluvial en el campus Ciudad Universitaria

Los pozos de absorción son obras de ingeniería que permiten la recarga artificial de un acuífero. En el campus Ciudad Universitaria se cuenta con alrededor de 9 pozos de absorción de agua pluvial, los cuales fueron construidos hace décadas, y su propósito inicial es el de servir como medida preventiva contra inundaciones.

El 18 de agosto del 2009 fue publicado en el Diario Oficial de la Federación la norma mexicana vigente NOM-015-CONAGUA-2007, con el objetivo de proteger la calidad del agua de los acuíferos, y aprovechar el agua pluvial y de escurrimientos superficiales para aumentar la disponibilidad de agua subterránea a través de la infiltración artificial.

Desde que entró en vigor la NOM-015-CONAGUA-2007, los pozos de absorción de agua pluvial existentes en el campus Ciudad Universitaria deben cumplir con lo establecido en dicha norma.

Con el propósito de verificar el cumplimiento de la norma, el área de calidad del agua de PUMAGUA en el Instituto de Ingeniería, se dio a la tarea de realizar un diagnóstico. Para ello se seleccionaron 5 pozos de absorción considerando su representatividad, ubicación, acceso, escurrimientos superficiales, áreas de mayor influencia e impacto, facilidades para la toma de muestra, y el tipo de zona (Escolar, Deportiva, y Administrativa). Los pozos seleccionados son: 1.
En el aspecto visual del diagnóstico, lo primero que se identificó es que los pozos de absorción existentes en el campus Ciudad Universitaria no cuentan con sistema de tratamiento que garantice los límites permisibles de calidad del agua pluvial de infiltración, tal como se establece en el inciso 5.2.3 de la NOM-015-CONAGUA-2007, donde se señala lo siguiente: “Las obras de disposición de aguas al subsuelo mediante pozos de infiltración, deben contar con un sistema de tratamiento que garantice que el agua en el punto de infiltración tendrá los límites establecidos...”

Tabla 15. Límites permisibles de contaminantes en agua para recarga artificial de acuíferos, y sus métodos de análisis.

<table>
<thead>
<tr>
<th>Contaminante</th>
<th>Unidad de medida</th>
<th>Límite</th>
<th>Método de prueba</th>
<th>Método de muestreo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materia Flotante</td>
<td>Unidad</td>
<td>0</td>
<td>NMX-AA-006-SCFI-2000</td>
<td></td>
</tr>
<tr>
<td>Sólidos Sedimentables</td>
<td>mg/L</td>
<td>2</td>
<td>NMX-AA-004-SCFI-2000</td>
<td></td>
</tr>
</tbody>
</table>
Sólidos Suspendidos Totales mg/L 150 NMX-AA-034-SCFI-2001
Nitrógeno Total mg/L 40 NMX-AA-026-SCFI-2001
Fósforo Total mg/L 20 NMX-AA-029-SCFI-2001
Coliformes Fecales NMP/100 ml No detectable NMX-AA-042-1987

El pozo de absorción de Campo de Beisbol se encuentra fuera de operación, y no fue clausurado correctamente como se señala en el Inciso 9 de la NOM-015-CONAGUA-2007, donde se refiere lo siguiente: “Los pozos de infiltración que dejen de operar deben cerrarse conforme a las especificaciones de la NOM-004-CONAGUA-1996, Requisitos para la protección de acuíferos durante el mantenimiento y rehabilitación de pozos de extracción de agua y para el cierre de pozos en general”. En dicho pozo se observa estancamiento permanente del agua y proliferación de insectos y larvas.

En el pozo de Medicina I también se observó estancamiento del agua y proliferación de insectos y larvas, aun cuando personal encargado de la Dirección General de Obras y Conservación de la UNAM dio mantenimiento a este pozo antes de iniciar la temporada de lluvias.

En el caso del pozo de Estadio Olímpico se observó una cantidad considerable de sedimentos acumulados en la cisterna, así mismo el “ademe” estaba recubierto de sedimento lo que impide el paso fluido del agua, reduciendo la capacidad de infiltración del pozo. Curiosamente el sedimento que recubría el “ademe” fungía como membrana, lo cual filtraba el agua pluvial al pasar por este.

En los pozos de Rectoría y Economía se percibió una buena capacidad de infiltración, además no se observó sedimentos en el fondo de la cisterna pero si materia flotante.

En cuanto al monitoreo de la calidad del agua pluvial de infiltración, realizado durante el periodo de agosto a octubre de 2013, se realizó un muestreo cada 15 días (28-agos, 12-sep, 26-sep, 10-oct y 23-oct) para un total de 5 muestras tomadas por cada pozo, lo que representa 25 muestras analizadas en los 5 pozos de absorción seleccionados para el diagnóstico.

En el 100% (25/25 muestras) de las muestras analizadas en los 5 pozos de absorción, se detectaron los parámetros físicoquímicos Nitrógeno Total y Fósforo Total dentro de lo establecido en la norma mexicana vigente NOM-015-CONAGUA-2007.[Ver anexo de Calidad del Agua, figuras 51 y 52 y tablas 38 y 39]. Mientras en los parámetros materia flotante y coliformes fecales, se detectaron por fuera del límite permisible de la norma en más del 80% de las muestras analizadas por cada pozo[Ver anexo de Calidad del Agua, figuras 53 y 54 y tablas 40 y 41].

No fue posible medir las grasas y aceites, ya que no se cuenta con el material y equipos de laboratorio necesarios. Este parámetro es de gran importancia porque los pozos Estadio Olímpico, Rectoría, Economía, y Medicina I, se encuentran en zonas de gran afluencia vehicular.

En cuanto a los parámetros sólidos sedimentables y sólidos suspendidos totales, se detectaron dentro del límite permisible de norma en las muestras de agua analizadas en los meses de
septiembre y octubre en los 5 pozos. Mientras en el mes de agosto en los pozos de Medicina I (493 mg/L), Campo de Beisbol (600 mg/L), y Economía (190 mg/L), se detectaron concentraciones de sólidos suspendidos totales muy por encima de lo permisible (150 mg/L), y concentraciones de sólidos sedimentables por arriba del límite de norma en el pozo Campo de Beisbol. Los datos evidencian una disminución de los sólidos suspendidos totales a medida que transcurrieron los meses.[Ver anexo de Calidad del Agua, figuras 49 y 50 y tablas 36 y 37].

Los resultados obtenidos del monitoreo de la calidad del agua pluvial que se infiltra a los pozos de absorción, evidencia que en el campus Ciudad Universitaria se está infiltrando artificialmente al acuífero agua residual pluvial que no cumple con la normatividad mexicana vigente NOM-015-CONAGUA-2007. Estos resultados están relacionados con la falta de un sistema de tratamiento que garantice la calidad del agua que se infiltra, tal como se señala en el inciso 5.2.3 de la norma NOM-015-CONAGUA-2007.

D. Agua residual tratada

1. Monitoreo integral de la calidad del agua residual tratada para riego de áreas verdes en el campus Ciudad Universitaria.

Con el fin de asegurar la calidad del agua residual tratada en la planta de tratamiento de aguas residuales Cerro del Agua, destinada para el riego de áreas verdes en el campus Ciudad Universitaria, se verificó el cumplimiento de la norma NOM-003-SEMARNAT-1997[Error! No se encuentra el origen de la referencia.], en la cual se establecen los límites máximos permisibles de contaminantes para las aguas residuales tratadas que se reúsan en servicios al público. Para ello, se llevó a cabo un monitoreo integral mensual de la calidad del agua residual tratada desde el efluente de la planta de tratamiento, hasta las cisternas de almacenamiento y aspersores de riego.

<table>
<thead>
<tr>
<th>Tabla 16. Límites máximos permisibles de contaminantes para las aguas residuales tratadas que se reúsan en servicios al público por contacto directo.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo de reúso</td>
</tr>
<tr>
<td>Servicios al público con contacto directo.</td>
</tr>
</tbody>
</table>
El efluente de la planta de tratamiento (PTAR) Cerro del Agua se monitoreó durante el periodo de febrero a junio de 2013. En adelante la planta no producía agua residual tratada con calidad para el riego de áreas verdes, ya que una vez iniciado el periodo de lluvias, se suspende el riego.

Las cisternas de almacenamiento Campus Central, Camellón Química, Camellón Veterinaria, Centro Médico, Pista de Calentamiento y Canchas Beisbol, se monitorearon durante el periodo de febrero a agosto de 2013, excepto el mes de julio. En cuanto a los aspersores de riego se monitorearon de febrero a junio, periodo durante el cual se realizó riego de áreas verdes.

Se observó que las cisternas Canchas Beisbol y Pista de Calentamiento, se llenaban ocasionalmente mezclando agua residual tratada y agua potable.

En el mes de febrero no se monitoreó las cisternas ni aspersores de Veterinaria y Centro Médico. En la primera cisterna porque se encontraba fuera de servicio por fugas, y la segunda cisterna porque no se pudo tener acceso. Después del mes de mayo cuando comenzaron las lluvias, se redujo considerablemente el riego de áreas verdes, lo que dificultó en gran manera la toma de muestra en aspersores.

Durante el periodo de monitoreo se midió la concentración de cloro residual libre con el fin de identificar si existía algún residual de desinfectante en el agua residual tratada. Se encontró que en el efluente de la PTAR Cerro del Agua se detectaban concentraciones de cloro residual libre.
de hasta 0.28 mg/L, excepto en el mes de mayo, cuando no estaba operando de forma regular la planta de tratamiento ni bombeando agua a las cisternas, debido a que empezaban las primeras lluvias. La muestra del efluente en mayo se pudo tomar porque se solicitó al operador encender bomba para poder tomar la muestra. [Ver anexo de Calidad del Agua, tabla 46].

La concentración de cloro residual libre medida en el efluente de la PTAR, ya no se encontró en las cisternas, excepto en la cisterna de Química que se detectó en algún momento y se atribuye a que es una de las de menor tamaño y cercana a la PTAR. En cuanto a las cisternas Canchas Beisbol y Pista de Calentamiento, donde se detectó concentraciones considerables de cloro residual libre, aún cuando estas están ubicadas a kilómetros de la PTAR, se debe a que estas se llenan en combinación con agua potable que contiene altas concentraciones de cloro libre.

En cuanto a los resultados de los parámetros analizados demanda bioquímica de oxígeno, sólidos suspendidos totales, y huevos de helminto, medidos en el agua residual tratada en el efluente de la planta de tratamiento Cerro del Agua, cisternas de almacenamiento y aspersores de riego, se detectaron durante todo el periodo de monitoreo del año 2013, dentro de los límites permisibles de la NOM-003-SEMARNAT-1997, para el riego de áreas verdes por contacto directo. [Ver anexo de calidad del agua, figuras 55, 56, 58, 59, 60, 62, 63, y 64, y tablas 42, 44 y 45].

En cuanto al parámetro microbiológico coliformes fecales, se detectó en los muestreos realizados dentro de los límites permisibles de la NOM-003-SEMARNAT-1997, en el efluente de la planta de tratamiento Cerro del Agua, y en cisternas y aspersores Camellón Química y Canchas Beisbol. [Ver anexo de calidad del agua, figuras 57, 61, y 65, y tabla 43].

Mientras en las cisternas Camellón Veterinaria, Centro Médico, Pista de Calentamiento y Campus Centralel parámetro coliformes fecales se detectó por arriba del límite permisible en el 40% (2/5 muestras), 40% (2/5 muestras), 20% (1/5 muestras) y 16.7%(1/6 muestras) de las muestras analizadas respectivamente. [Ver anexo de calidad del agua, figuras 57, 61, y 65, y tabla 43].

Aún cuando en las cisternas de Camellón Química y Canchas Beisbol, se detectaron valores de coliformes fecales en el agua residual tratada por debajo del límite permisible (240 UFC/100ml), con lo cual cumplieron norma, también es cierto que se detectó crecimiento bacteriano, por lo que se advierte que en el caso particular del uso de una cisterna, no se debe permitir su almacenamiento durante días considerando que estos microorganismos se multipican rápidamente, con lo que probablemente después de unos días la población bacteriana supere el límite permisible de la NOM-003-SEMARNAT-1997.

Un aspecto muy importante de resaltar, es que en el efluente de la PTAR Cerro del Agua, no se detectó la presencia de coliformes fecales en el agua residual tratada, mientras en las cisternas si se detectó crecimiento bacteriano. Esto indica que la presencia de esta contaminación microbiológica proviene de otra fuente. Lo que se atribuye al deterioro de las tuberías y de las mismas cisternas.

En conclusión, el agua residual tratada que se produce a un alto costo y con excelente calidad en la planta de tratamiento de aguas residuales Cerro del Agua, se está perdiendo en el momento de su transporte y almacenamiento en cisternas.
Por lo cual, se sugiere a la Coordinación de Áreas Verdes y Reforestación de la UNAM, que de seguimiento al estado estructural del sistema de distribución y almacenamiento del agua residual tratada.

Por otra parte, considerando las concentraciones de cloro residual libre detectadas en el agua residual tratada en cisternas (0.00 mg/L). [Ver anexo de Calidad del Agua, tabla 46], se sugiere que se estudie con cuidado la posibilidad de aplicar dosis de desinfectante que permitan mantener un residual de cloro libre en el agua tratada, y así evitar el recrecimiento bacteriano, asegurando la calidad microbiológica del agua hasta su almacenamiento y posterior riego en áreas verdes.

E. Formación de recursos humanos

En el grupo de Calidad del Agua se ha contado con la colaboración de estudiantes que han participado en diversas actividades en el año 2013, se contó con 2 estudiantes de servicio social [Tabla 17], 2 estudiantes que están en el desarrollo de 2 tesis de licenciatura[Tabla 18], y 1 estudiante que logró concluir su tesis [Tabla 19].

<table>
<thead>
<tr>
<th>Prestador</th>
<th>Servicio Social</th>
<th>Dependencia</th>
<th>Periodo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daniela Patricia Aguirre Sánchez</td>
<td>Apoyo en la determinación de parámetros físicoquímicos en agua potable, agua residual y agua residual tratada.</td>
<td>Instituto de Ingeniería</td>
<td>2013-1</td>
</tr>
<tr>
<td>Jesús Tadeo Martínez Díaz</td>
<td>Apoyo en la determinación de parámetros microbiológicos de agua potable, agua residual y agua residual tratada.</td>
<td>Instituto de Ingeniería</td>
<td>2013-2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tesista</th>
<th>Título de la tesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hugo Márquez Sánchez</td>
<td>ESTUDIO DE LA CALIDAD Y TRATAMIENTO DEL AGUA DE LLUVIA DE RECARGA NATURAL EN LOS POZOS DE ABSORCIÓN DE CIUDAD UNIVERSITARIA</td>
</tr>
<tr>
<td>Jorge Jesús Cázares Venegas</td>
<td>CALIDAD DEL AGUA DE REÚSO: GENERACIÓN-ALMACENAMIENTO-DISTRIBUCIÓN, POSTERIOR A LA RENOVACIÓN DE LA PLANTA DE TRATAMIENTO “CERRO DEL AGUA”</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tesista</th>
<th>Título de la tesis</th>
<th>Dependencia</th>
<th>Año de titulación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carlos Alberto Rosas Cabello</td>
<td>RECOLECCIÓN E INFILTRACIÓN DE AGUA PLUVIAL EN CIUDAD UNIVERSITARIA CON FINES DE RECARGA DEL ACUÍFERO</td>
<td>Instituto de Ingeniería</td>
<td>2013</td>
</tr>
</tbody>
</table>
F. Congresos, Publicaciones y Conferencias.

VII. Comunicación / Participación, 2013

A. Indicadores de avance

- La página web de PUMAGUA ha recibido más de 35,000 visitas
- Se ha logrado tener más de 4,000 amigos en facebook y más de 2,800 en twitter
- Se ha publicado 1 artículo en revista arbitrada y 2 en revistas de divulgación y otros 4 artículos y capítulos de libro están en revisión
- PUMAGUA tuvo presencia en 6 canales de televisión, 6 canales de radio y 3 medios digitales
B. Actividades realizadas
A continuación se especifican las actividades realizadas de acuerdo al sector al que fueron dirigidas:

C. Estudiantes y académicos

1. “Reunamos acciones por el agua”, para estudiantes de licenciatura de la UNAM

 a) Exposición de trabajos ganadores de Reunamos Acciones por el Agua, en la Facultad de Medicina

Del 18 al 20 de febrero se llevó a cabo la exposición “Arte y ciencia reunidos por el agua”, en el auditorio Raoul Fournier, de la Facultad de Medicina. En ésta se presentaron los trabajos de los alumnos ganadores del concurso Reunamos acciones por el agua.

En la exposición, que primero tuvo lugar en la sala de exposiciones de la Torre de Ingeniería, el día 22 de noviembre de 2012, se presentaron tanto carteles, como prototipos de esculturas y de mampara, al igual que bidones a ser rellenos con agua de la llave y así evitar el consumo de agua embotellada.

b) Exposición de los trabajos de reunamos acciones por el agua en Huichapan, Hidalgo

La Comisión de Agua Potable, Alcantarillado y Saneamiento del Municipio de Huichapan, Hidalgo (CAPOSA), presentó en el Día Mundial del Agua la exposición de Reunamos acciones por el agua, realizada en el Instituto Huichapense de Cultura.

Con la presencia de Fernando Jiménez Uribe, Presidente Municipal de Huichapan; César Vivanco Quijano, director general de la CAPOSA y José María Villegas Parga de la Comisión Estatal del Agua y Alcantarillado (CEAAA) fue inaugurada la exhibición que presentaba los prototipos, maquetas, esculturas y carteles que participaron en el encuentro de reunamos acciones por en agua.

Al termino de la inauguración los estudiantes de la FES Aragón quienes desarrollaron la propuesta de “Captación y procesamiento de agua pluvial para uso en áreas verdes del campus”, mostraron su trabajo a alumnos de nivel preparatoria y licenciatura en la Universidad del Nuevo México, Huichapan, Hidalgo, con el objetivo de impulsar a los estudiantes a realizar proyectos y sugerencias que permitan llevar a cabo un manejo eficiente del agua.

c) Presentación de propuestas ganadoras a autoridades universitarias

El 17 de abril, en el auditorio José Luis Sánchez Bribiesca de la Torre de Ingeniería, se celebró el encuentro con autoridades universitarias de los ganadores del concurso “reUNAMos acciones por el agua”, con el objetivo de darles a conocer las propuestas de los estudiantes para fomentar el uso responsable del agua dentro de los espacios universitarios y entablar posibles vínculos de colaboración para el desarrollo de las mismas.

Con la participación de representantes de las facultades de Arquitectura, Medicina, Ingeniería, Psicología y Medicina Veterinaria, de las Facultades de Estudios Superiores Iztacala y Aragón, de
la Coordinación de Humanidades y de la Escuela Nacional de Artes Plásticas, los estudiantes que formaron parte de las propuestas ganadoras del concurso organizado por el Programa de Manejo, Uso y Reúso del Agua en la UNAM (PUMAGUA) y el Molina Center for Energy and Environment (MCE²), compartieron los resultados con la comunidad universitaria.

Los trabajos se organizaron en torno a dos grandes rubros: propuestas técnicas y arte y comunicación.

En el presidium estuvieron el Dr. Fernando González Villarreal, el D.I. Héctor López Aguado, Coordinador de la carrera de Diseño Industrial, el M. en C. Sergio Martínez, de la Facultad de Estudios Superiores de Aragón.

Los alumnos ganadores fueron 37, pertenecientes a las Facultades de Estudios Superiores Aragón y Zaragoza, la Facultad de Arquitectura y la Escuela Nacional de Artes Plásticas (ENAP), con los 14 proyectos aquí citados:

-Bidón “VIDE”

-Trabajo “Humedales para purificar agua residual y reutilizarla en cultivo de trucha

-Escultura “Azul de verde”

-“Humedal artificial a escala piloto para tratamiento de residuos líquidos en laboratorios de Ciencias -Químico Biológicas en la FES Zaragoza.”

-Escultura: “Eskasia. No habrá ni qué escurrir”

-Trabajo "Reúso de agua tratada por humedales construidos en servicios sanitarios

-Escultura “Cascada de pinceles”

-Trabajo “Tratamiento y reciclado de agua”

-Escultura “Nuevo ciclo”

-Trabajo “Captación y procesamiento del agua pluvial para su uso en el riego de áreas verdes de la -Fes Aragón

-Escultura “Bosques

-Trabajo: “Optimización del tratamiento de aguas residuales de un humedal de flujo sub-superficial”

-Escultura: “Derrame plástico”

-Trabajo “Captación y aprovechamiento de aguas de lluvia por medio de energías renovables”
2. **Auditoría de muebles de baño en Facultad de Contaduría y Administración (FCA)**

El área de comunicación organizó, en conjunto con personal de la FCA un curso de capacitación dirigido a alumnos de dicha facultad para supervisar los muebles de baño de la misma, como una acción de uso responsable del agua.

El Ing. Guillermo Montero, del área de Balance Hidráulico de PUMAGUA impartió una capacitación a 23 alumnos de la Facultad de Contaduría y Administración, quienes próximamente participarán en la auditoría del agua. Se les impartió un breve curso sobre los procedimientos que deberán llevar a cabo para verificar el correcto funcionamiento de los muebles de baño.

Primero, se efectuará un inventario de los muebles y, posteriormente, las siguientes pruebas de funcionamiento: 1) intercambio de agua; 2) exclusión de residuos; 3) eliminación de desperdicios, 4) espejo de agua; 5) barrido y 6) arrastre.

Este ejercicio se llevó a cabo hace tres años con alumnos de la Facultad de Ciencias y se encontró que el 30% de los muebles presentaban fugas o estaban descompuestos. El dato coincidió con lo encontrado por PUMAGUA en otras dependencias, por lo cual el Programa considera que los alumnos realizan este trabajo de manera adecuada. Se espera que los universitarios de otras facultades se sumen a este esfuerzo.

3. **Pláticas a estudiantes**

Con motivo del Día mundial del agua, se asistió a la FES Cuautitlán y al Municipio de Huichapan, para impartir una plática sobre el uso responsable del agua ante los alumnos de nuevo ingreso.

4. **Personal de mantenimiento: intendentes y jardineros**

Taller para jardineros

Para promover el ahorro de agua en el riego de áreas verdes de C.U., la Coordinación de Áreas verdes y forestación de la DGOyC, el Instituto de Geología y PUMAGUA, ofrecieron un taller a los jardineros para proponerles un tiempo de riego suficiente para las plantas y sin desperdicio de agua. De los 88 l/s de agua potable que se extraen actualmente de los 3 pozos de C.U., 22 se utilizan para el riego de 100 hectáreas de jardines. En consecuencia, se requiere encontrar los mecanismos para disminuir este volumen de agua.

Con apoyo de la Coordinación de Áreas Verdes y Forestación de la DGOyC el Biól. Mario Cayetano, del Instituto de Geología, a través de PUMAGUA impartió una serie de charlas dirigidas a los jardineros de Ciudad Universitaria. Utilizando una muestra de suelo de C.U., se les mostró cómo éste se satura cuando el tiempo de riego es excesivo y el agua restante se pierde por filtración, por lo que no la aprovechan las plantas; la tierra pierde nutrientes y el gasto de agua se traduce en pérdidas importantes.

El Instituto de Geología realizó un estudio donde se determinó la lámina de riego (volumen de agua requerido) con base en variables como tipo de suelo, clima y tipo de vegetación. A partir de este dato y, sabiendo cuánta agua sale por los aspersores por unidad de tiempo, se calculó el tiempo adecuado para el riego de las áreas verdes. La recomendación general para el riego es de 30 minutos, cada tercer día y en un horario matutino (antes de las 11hrs) o vespertino (después de las 17hrs), para evitar pérdidas por evaporación.

Participaron más de 200 trabajadores encargados de las áreas verdes de toda CU, quienes fueron muy participativos, expusieron sus puntos de vista, sugerencias y comentarios y concordaron en la importancia de ahorrar agua durante el riego.
D. Autoridades universitarias

1. Campus externos
En el mes de febrero se llevó a cabo el Taller de intercambio de experiencias sobre el manejo responsable del agua, en el cual las dependencias participantes en PUMAGUA mostraron sus avances, con el propósito de entusiasmar al resto de las dependencias a hacer lo correspondiente.

<table>
<thead>
<tr>
<th>Dependencia</th>
<th>Asistencia confirmada</th>
</tr>
</thead>
<tbody>
<tr>
<td>FES Acatlán</td>
<td>Dr. Carlos Arce</td>
</tr>
<tr>
<td></td>
<td>Lic. Ariadna Uribe Ortíz</td>
</tr>
<tr>
<td>FES Aragón</td>
<td>Mtro. Martín Ortíz León</td>
</tr>
<tr>
<td>FES Cuautitlán</td>
<td>Lic. Imelda Márquez</td>
</tr>
<tr>
<td>FES Iztacala</td>
<td>Ing. Ramón Castillo Torres</td>
</tr>
<tr>
<td>FES Zaragoza</td>
<td>Mtro. Eliseo Cantellano y dos personas más</td>
</tr>
<tr>
<td>UNAM, campus Juriquilla</td>
<td>a) Mtro. Juan Villagrán Arq. Carlos Carrasco</td>
</tr>
<tr>
<td>UNAM, Campus Morelia</td>
<td>Lic. Jesús Arnoldo Bautista</td>
</tr>
<tr>
<td>UNAM, Campus Morelos</td>
<td>b) Lic. Alejandra Caballero-Líder de proyecto</td>
</tr>
<tr>
<td></td>
<td>Dr. Jesús Arnoldo Bautista Corral Coord. de servicios administrativos</td>
</tr>
<tr>
<td></td>
<td>Lic. Patricia Pino - Jefa unidad de difusión</td>
</tr>
<tr>
<td></td>
<td>Mtra. Ana Laura Fernández- Jefa unidad de apoyo técnico</td>
</tr>
<tr>
<td>Dirección General de Obras y Conservación</td>
<td>Ing. Gabriel Martínez</td>
</tr>
<tr>
<td></td>
<td>Leopoldo Manuel Gómez López</td>
</tr>
</tbody>
</table>

2. Ciudad Universitaria

a) Dependencias y entidades del Circuito Mario de la Cueva
El área de Balance Hidráulico identificó a aquellas dependencias a las que se requería convocar a una reunión, con el fin de motivarlos a colocar medidores o a implementar/dar seguimiento a las acciones PUMAGUA. Así, se organizó una reunión en Tienda UNAM y se invitó a representantes de la Filmoteca, Centro Universitario de Estudios Cinematográficos, TVUNAM, Facultad de Ciencias Políticas y Sociales, Instituto de Investigaciones Antropológicas y de la misma Tienda UNAM. En dicha reunión se logró motivar al personal del CUEC a colocar medidores en sus nuevas instalaciones; al personal del IIA le interesó colocar un humedal y se les puso en contacto con personal de FES Zaragoza que construye humedales; se acordó generar
conjuntamente material de difusión con TVUNAM para difundir sus logros en materia de agua y posteriormente ellos lo colocaron en la tienda.

![Cartel PUMAGUA](image.jpg)

Figura 42. Cartel elaborado por la Dirección General de Servicios a la Comunidad para Tienda UNAM.

b) **Facultad de Derecho.**

En el mes de abril, se tuvo una reunión con el Secretario Administrativo de la Facultad de Derecho y con el personal a su cargo, en la cual se acordaron acciones con el área de Balance Hidráulico.

E. **Comunidad universitaria y externa**

1. **Festival H2O: efecto esperado**

 a) **Ceremonia de premiación de los concursos del festival H2O: efecto esperado 2012.**

El día 26 de febrero se celebró la ceremonia de premiación de los concursos de micro-relatos de placer, inventos fantásticos y fotografía, del segundo festival H2O: efecto esperado, realizado en 2012. En el presídium acompañaron a PUMAGUA el Director de la Dirección General de Atención a la Comunidad Universitaria, Lic. Fernández Varela, así como el Lic. David Vázquez Licona, Subdirector de formación artística y cultural.
Cristian Morales Orozco, ganador de la categoría Micro relato con el texto La Cara de la Felicidad, menciona que “Más del 80 por ciento de nuestro cuerpo, cerca de dos terceras partes de la superficie del planeta, todas las lágrimas de las madres y la sangre de los héroes, el bautizo católico y la belleza de las fuentes. Un sin número de celebraciones, días alusivos, pero también guerras y demarcaciones geográficas están marcadas por el agua. El agua marca la vida desde el nacimiento, llegamos al mundo azules y empapados, y luego de expulsar el líquido de los pulmones nos llenamos de vida desde el primer llanto. También determina la evolución de las sociedades, las ciudades y los hogares. Sin embargo, no sabemos respetarla, la utilizamos sin la conciencia necesaria para ello, hacemos la guerra por su control, no pagamos el recibo bimestral y la desperdiciamos con cualquier motivo”, expresa Cristian Morales.”

b) Organización de festival 2013

Como consecuencia del éxito de sus versiones anteriores, 2011 y 2012, PUMAGUA y la Dirección General de Atención a la Comunidad Universitaria (DGACU) organizaron nuevamente en 2013 el festival H2O: efecto esperado, un festival artístico y cultural que busca involucrar a la comunidad universitaria y externa a la UNAM en el uso responsable del agua. Durante los meses de marzo a agosto, se han llevado a cabo reuniones periódicas con el Lic. David Vázquez Licona, Subdirector de formación artística y cultural, de la DGACU, y con su equipo, con el fin de definir las actividades y avanzar en cada una de ellas. A continuación se detallan las actividades acordadas y el trabajo que realizó el equipo de PUMAGUA al respecto:

- **Exposición de organizaciones:** Se definieron las organizaciones a invitar, se les envió un oficio de invitación, se contactó a las mismas para confirmar su asistencia, se hizo un plano con cada uno de los módulos. Asimismo, se diseñaron los carteles de PUMAGUA para el stand y se procedió a tomar las fotografías para el mismo.

- **Proyección de animaciones:** se seleccionaron diez animaciones sobre el agua, las cuales serán proyectadas el mismo día de la exposición de organizaciones.

- **Charlas-debate:** se seleccionaron tres personas: un ingeniero, un biólogo y un químico para participar en esta actividad, en la cual una persona con formación técnica dialogará acerca del agua con una con formación artística.

- **Concursos de micro relato, fotografía e invento fantástico:** se definió el tema de los concursos, se elaboró material electrónico para darles difusión y éste se publicó en las redes sociales.

- **Exposición fotográfica:** se seleccionaron las fotos que se van a exponer.

- **Intervención de espacio:** la organización de esta actividad está a cargo de la DGACU

A última hora se canceló el festival, por instrucción del Secretario General de la UNAM.

c) Publicación de obras premiadas de los concursos de los festivales 2011-2013

En conjunto con la DGACU se hizo un programa de trabajo para elaborar la publicación. Posteriormente, se revisó el material de las obras ganadoras de los concursos de micro-relato, fotografía e invento fantástico, de los festivales 2011 y 2012 y se seleccionaron las obras premiadas, por no contar con el material de todas las obras ganadoras.
2. **Actualización de la página web**

Se mantuvo actualizada la página, incluyendo la información sobre los consumos de las dependencias, los muestreos de calidad del agua y todos los eventos organizados por el área de Comunicación/Participación.

3. **Actualización de redes sociales**

Se actualizó diariamente el facebook y el twitter con información general y avances de PUMAGUA, así como con noticias nacionales e internacionales sobre el agua, e imágenes artísticas en donde aparece el agua. Se le dio atención a todos los comentarios y preguntas.

Cabe señalar que partir de la reactivación de twitter en enero, se ha logrado tener 2800 seguidores. En Facebook se tienen alrededor de 4,000 y, en promedio, 3 personas al día solicitan ser amigos de PUMAGUA.

4. **Boletín PUMAGUA**

Se elaboraron y enviaron los Boletines 9 a 14, con el siguiente contenido:

- **Boletín #9**: Avances de la Red del agua de la FES Acatlán
- **Boletín #10**: Recuperación de fugas en Tienda UNAM y FCPyS; taller de riego; premiación H2O: efecto esperado.
- **Boletín #11**: Presentación de propuestas de Reunamos acciones por el agua; Elaboración de modelo digital de red de tuberías en CU; consumo de agua en dependencias de CU
- **Boletín #12**: Taller para jardineros; Curso para estudiantes para realizar auditorías de sus muebles de baño en FCA; Supervisión de muebles de baño (redactado por Balance Hidráulico)
- **Boletín #13**: Festival H2O: efecto esperado. Resumen de las Jornadas del Agua.
- **Boletín especial**: Medidas de prevención del cólera.
- **Boletín #14**: Consumos del mes de octubre; Lo más sobresaliente de la séptima conferencia del IWA en París; Mantenimiento de medidores de consumo.

5. **Observatorio del Agua UNAM**

Se actualizaron los datos del Observatorio del Agua, en los casos en los que se contó con la información de las áreas correspondientes.

6. **Elaboración de artículos**

Se publicó el artículo siguiente en una revista arbitrada:

Se publicaron los siguientes artículos de divulgación:

Aparecerá en el próximo número de la revista *Aguas en Quintana Roo*.
Informe de Avances PUMAGUA 2013

Lartigue Baca, C, Val Segura, R, de la Cruz Cuevas, P, González Villarreal, F, 1er Concurso Reunamos acciones por el agua: un esfuerzo de PUMAGUA y el MCE2 involucra estudiantes de la UNAM en el manejo responsable del agua

Se encuentra en revisión en la revista Ciencia y Desarrollo de CONACYT:

González Villarreal, F, Val Segura, R, Rocha Guzmán, D, de la Cruz Cuevas, P, Lartigue Baca, C (2013) PUMAGUA: Preservar el agua, compromiso desde la Universidad

Asimismo se redactaron los objetivos y avances del área de Comunicación/Participación para el artículo para una revista de arbitraje, que compiló la Dra. Teresa Orta: M. T. Orta de Velásquez *, F.J. González Villarreal, I. Yañez-Noguez, R. Val Segura, C. Lartigue Vaca, I. Monje-Ramírez, J.D. Rocha Guzmán. Implementation of efficient use and water quality control actions within the PUMAGUA programme

Se enviaron los siguientes capítulos para los libros que se detallan a continuación:

Cecilia Lartigue Baca, Rafael Val Segura. La Universidad Nacional Autónoma de México ante la problemática del agua en una megaciudad. Memorias del Coloquio Gestión pública y social de los recursos naturales.

7. Presencia en medios de comunicación

a) Televisión

- Se tuvieron entrevistas en los programas siguientes:
 - Negocios responsables y La esfera azul, de Green TV
 - Noticias ambientales, de TVC
 - Creadores universitarios, de foto TV
 - La meta del planeta, del canal 410 de Cablevisión
 - Conferencia de prensa PUMAGUA, en Televisión Azteca

b) Radio

- 13 de julio: Zona libre, del Consejo Nacional de Población, en Reactor 105, IMER (105.7 F.M)
- 3 y 10 de agosto: Zona verde, en 88.1 F.M, de Radio Red.
- 31 de julio y 15 de agosto: Ciencia 3 x 7, en 1110 de A.M., de Radio Red
- 21 de agosto: Territorio ambiental, en Opus 94.5, del IMER
- 14 de septiembre: Programa radiofónico de la Procuraduría Ambiental y del Ordenamiento Territorial del D. F., en IMER 94.5 de F.M

c) Medios impresos

- PUMAGUA: supervisor del consumo responsable de agua. Por Melissa Rodríguez. Mundo HVACR. Número 3, 2013-08-20
d) Medios digitales:

- Académicos de la UNAM presentaron acciones y resultados derivados del programa PUMAGUA. Departamento de comunicaciones y Relaciones Públicas de la Universidad Autónoma de Aguascalientes. 2013-21-05 [http://www.uaa.mx/rectoria/dcrp/?p=5138]

F. Otras actividades

a) Visita a la Universidad Autónoma de Baja California Sur (UABCS)

En el mes de abril se asistió a las instalaciones de la UABCS, en la Paz, Baja California, en donde se realizó un pre-diagnóstico del área de comunicación, se sostuvieron reuniones con el personal de la Universidad, para dárselos a conocer y, posteriormente, se compartió con ellos el instrumento de medición utilizado por PUMAGUA en su para conocer las percepciones, actitudes y conductas de los universitarios acerca del agua y de su manejo.

b) Elaboración de curso para capacitación de organismos operadores

Se elaboró una propuesta de curso de herramientas de comunicación, dirigido al personal de los organismos operadores. Se compiló la aportación de las otras dos áreas, elaborando el documento final.

c) Reunión con el Ayuntamiento de Aguascalientes y la Universidad Autónoma de Aguascalientes (UAA)

En el mes de mayo, se realizó una visita a la UAA con el objetivo de comenzar un proyecto con el Ayuntamiento de Aguascalientes, encabezado por la Alcaldesa, para convertirse en el primer municipio verde del país y en una ciudad sustentable de referencia a nivel internacional. Por su parte, la UAA participará con investigaciones en la normatividad de aguas residuales para diagnosticar y delimitar estándares de calidad del agua.

d) Participación en el Water Workshop, organizados por la Universidad de Florida

Se asistió al taller, organizado por la Universidad de Florida, en el Hotel Radisson, del sur de la Ciudad de México y se presentó PUMAGUA a los asistentes.

e) Realización de un video institucional de PUMAGUA
Con el objetivo de presentar los avances en el manejo y uso del agua en el campus de Ciudad Universitaria, se trabajó en un video que refleja las acciones implementadas por cada una de las áreas del Programa.

e) Elaboración de 2 historietas para el uso responsable del agua

Se modificó la historieta dirigida a estudiantes, para hacerla visualmente más atractiva. Se elaboró una cuartilla con la misma información contenida en la historieta, pero con formato técnico, y actualmente se procede a comparar la efectividad de ambas, con el fin de determinar si la historieta resulta efectiva, así como para saber qué modificaciones se requieren. Se puso a prueba con 22 alumnos del ITESM, en donde se encontró que el comic transmite la información adecuadamente. Solamente se requiere

Se preparó el texto de otra historieta dirigida a jardineros y se planea contratar a un ilustrador para que se haga cargo de realizar las ilustraciones.

f) Capítulo “Efficient use of water resources for sustainability”

Se elaboró un capítulo para el libro “Sustainability of Integrated Water Resources Management (IWRM): Water Governance, Climate and Echo-hydrology” Shimelis G. Setegn and Maria C. Donoso (ed), el cual será publicado por Springer.

VIII. Bibliografía

tratamientos a que debe someterse el agua para su potabilización. México, D.F., 22 de noviembre.

24. EPA. 2001. Method 1602: Male-specific (F+) and Somatic Coliphage in water by single agar layer (SAL) procedure. (Environmental Protection Agency), Washington D. C.

38. Introducción al diseño de zonas de riego y drenaje Gracia Sánchez, Jesús. 2002 Hidráulica. Instituto de Ingeniería.

